Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this stu...Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.展开更多
Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structur...Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51072159 and 51273159)the Fundamental Research Funds for the Central University and Program for New Century Excellent Talents in Universities(Chinese Ministry of Education,NCET-08-0444(2301G107aaa))
文摘Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.
基金supported by the Fundamental Research Funds for the Central Universitythe National Natural Science Foundation of China (No. 51072159+1 种基金51273159)Program for New Century Excellent Talents in Universities (Chinese Ministry of Education,NCET-08-0444)
文摘Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.