Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
The paper presents an empirical method to calculate bow flare slamming pressure and the green water load. Many empirical formulae for various types of vessels have been provided by rules of ship classification societi...The paper presents an empirical method to calculate bow flare slamming pressure and the green water load. Many empirical formulae for various types of vessels have been provided by rules of ship classification societies. In the present work, attempt is made to develop generalized formulations for all types of displacement vessels. Extreme sea conditions are considered. Bow flare pressure is derived in terms of flare and waterline angles. Specific condition for limiting waterline angle is derived based on 2 D numerical simulations. Deck wetness is derived in terms of static and dynamic swell-up and the relative motion. Variation of static swell along the length is determined based on potential solution based analyses considering variation in vessels’ hull. 2 D wedge simulations are carried out to validate the formulation of dynamic swell-up. Results of the calculated bow flare and deck pressures are compared with various ship classification society formulations and the trends are found to be in good agreement in general barring at bow flare where lower pressure is found in most of the presented cases. Also IACS UR S21 A(2018) governing minimum pressure for deck scantlings is found to be conservative in few of the presented cases. Although scantlings assessment is not performed, the presented new formulations may help in realistic assessment of scantlings.展开更多
Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetn...Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetness. periodic variations of climate and interannual laws of variation. The discussion also covers the subjects of effects of El Nino. sunspot, predictors of general circulation on climatic variation of dryness and wetness. There arc main conclusions as follows: (1) The main cyclic variations of climate are 40 and 11 years in Kunming. the former being subject to that of El Nino and the latter to that of sunspots. They are two principal factors for periodic variations of dryness and wetness in Kunming. (2) A close relationship exists between interannual variations and general circulation factors for Kunming. The comprehensive influence as imposed by ENSO and allocations of W.C.E. patterns of circulation in the westerly are ma.tor weather and climate causes for the interannual variations of precipitation in Kunming.展开更多
Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and...Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and 24 months has been calculated. The SPI on 3, 6, 12 and 24 months present 4 wet periods prevailed during 1873-1885, 1904-1923, 1938-1960 and 1983-2005, and 3 dry episodes during 1886-1903, 1924-1937 and 1961-1982. Significant periods of higher wavelet power in the SPI-24 months occurred on the time scales of 2-7-year band in around 1880-1890, 1910-1950 and 1970-1990, and at 8-15-year band in 1920-1960 and 1965-2000 respectively. Periodicities in the SOl and ENSO indices are similar to those in SPI-24 months with little difference, namely, in the SPI-24 months, there are significant periods at the 2-7- and 8-15-year bands during 1930-1940. The periodicity components in individual SPI-24 months, SOl and ENSO indices are more complicated, showing the wetness and dryness variability in Shanghai is controlled by more than one physical factors. The research results indicate that the Shanghai area has experienced dryness and wetness variability on different time scales during the past 133 years.展开更多
Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of drynes...Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of dryness and wetness on a year-to-year basis are determined and preliminary features of dryness and wetness are discussed for the whole of the province and individual regions according to a 5-grade standard of division. The result has shown that there is on an average a rainfall of 1748 mm per year across the province, with four major centers of maxima (of annual rainfall over 2000 mm) at Enping, Qingyuan, Haifeng and Longmen. For the mean across the province, the years 1959. 1 961. 1973.1975, 1991 are anomalously wet and the years 1956, 1963, 1977 and 1991 are anomalously dry. of them, 1973 is the unusually wet year (with the absolute value of precipitation anomaly over twice as large as the standard deviation) and 1956 and 1963 are the usual dry years. For the occurrence frequency of unusually wetness and dryness over individual river valleys in the province, there are more years of dryness in the valleys of the Xijiang and Dongjiang Rivers. More years of wetness in that of the Jianjiang River, and only years of wetness instead of years of dryness in the valleys of Beijiang and Hanjiang Rivers.展开更多
In this study, artificial leaf resistance was used to simulate leaf wetness. Specific to the solar greenhouse environment in Tianjin, microclimate monitoring equipment was installed for the collection of temperature g...In this study, artificial leaf resistance was used to simulate leaf wetness. Specific to the solar greenhouse environment in Tianjin, microclimate monitoring equipment was installed for the collection of temperature group and humidity group data, as well as solar radiation and leaf wetness in the greenhouse. In order to reduce the complexity of multivariate factor prediction and ensure the richness of selected data types, correlation analysis was made to the 2 groups of data, screening 5 000 groups of data, including the humidity group data RH, RH_(20), RH_(40), temperature group data T, T_(20), T_(40), and solar radiation W. The data were then analyzed by principal component analysis, screening out 4 groups of principal components to show the leaf wetness index.展开更多
A variety of landscape properties have been modeled successfully using topographic indices such as topographic wetness index (TWI), defined as ln(a/tanβ), where a is the specific upslope area and β is the surface sl...A variety of landscape properties have been modeled successfully using topographic indices such as topographic wetness index (TWI), defined as ln(a/tanβ), where a is the specific upslope area and β is the surface slope. In this study, 25 m spatial resolution from digital elevation models (DEM) data were used to investigate the scale-dependency of TWI values when converting DEMs to 50 and 100 m. To investigate the impact of different spatial resolution, the two lower resolution DEMs were interpolated to the original 25 m grid size. In addition, to compare different flow-direction algorithms, a second objective was to evaluate differences in spatial patterns. Thus the values of TWI were compared in two different ways: 1) distribution functions and their statistics;and 2) cell by cell comparison of DEMs with the same spatial resolution but different flow- directions. As in previous TWI studies, the computed specific upstream is smaller, on average, at higher resolution. TWI variation decreased with increasing grid size. A cell by cell comparison of the TWI values of the 50 and 100 m DEMs showed a low correlation with the TWI based on the 25 m DEM. The results showed significant differences between different flow-diretction algorithms computed for DEMs with 25, 50 and 100 m spatial resolution.展开更多
Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually p...Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually performed for dry road conditions. Based on the fact that roads are wet during a considerable time over the year and as part of the projects MIR/AM, ROLRES and ROSANNE, the TUG (Technical University of Gdafisk) in Poland and VTI (Swedish National Road and Transport Research Institute) in Sweden carried out trailer rolling resistance measurements on wet road surfaces to investigate water film influence on rolling resistance on different pavements. A specially-designed trailer to measure rolling resistance has been used. The test sections were both rural roads and an abandoned airfield equipped with water film sensors mounted in the pavement. Results indicate strong influence of test speed and water film depth, as well as influence of surface texture. The increase of rolling resistance on wet surfaces is caused by both hydrodynamic phenomena and cooling effect of water that decreases tire temperature thus increasing rolling resistance.展开更多
Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation ...Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation cover derived from satellite imagery to estimate soil surface wetness (triangle method) in Allahabad district. The pixel distributions create triangular shapes because the range of surface radiant temperature decreases as the amount of vegetation cover increases and sufficient number of pixels exists. A very weak correlation is found between the simulated soil surface wetness and ground measured soil moisture at deeper soil layers (R<sup>2</sup> < 0.15) on all the dates under investigation. This is because the drying rates at the surface discontinue to be linearly correlated to that at lower levels (depths). The standing water pixels distort the shape of the triangle especially at lower left edge of the triangle. This distortion is removable. The spatial and temporal inhomogeneity of soil surface wetness is examined.展开更多
As global temperature rises,the frequency of extreme climate events,e.g.,severe droughts and floods,has increased significantly and caused severe damage over the past years.To this regard,precipitation efficiency,a cr...As global temperature rises,the frequency of extreme climate events,e.g.,severe droughts and floods,has increased significantly and caused severe damage over the past years.To this regard,precipitation efficiency,a crucial meteorological parameter,could provide valuable insights for a better understanding of the patterns and characteristics of these extreme events.In this study,taking Guangdong province as an exemplary region,we first obtained long-term and high-resolution historical records of precipitation efficiency by integrating the observations from a dense network of Global Navigation Satellite System(GNSS)stations with precipitation data,and then characterized the extreme drought and wetness through climate indices.We found a distinct seasonal trend in precipitation efficiency in Guangdong,with annual fluctuations ranging from 10 to 25%.Notably,precipitation efficiency is higher in proximity to the Pearl River Delta Plain and gradually decreases towards the east and west.The occurrence of anomalous peaks and valleys in precipitation efficiency generally corresponds to dry and wet conditions,respectively.A total of 9 extreme wet events and 6 dry events occurred from January 2007 to May 2022,with durations from 3 to 6 months.Our results also demonstrated that both wet and dry frequencies exhibit an increasing trend with the expansion of the time scale,and the frequency of extreme events near the Pearl River Delta Plain surpasses that of other regions.Furthermore,the propagation time from meteorological anomalies to agricultural and hydrological anomalies is about 3 months.The periodic characteristics of meteorological anomalies are identified as the primary driver for other anomalous periodic patterns.Our work unveils the long-term dynamic behavior of precipitation efficiency,as well as the characteristics of extreme drought and wetness events in the regions characterized by intricate land–atmosphere interactions.展开更多
Leaf wetness duration(LWD)is a critical parameter used to predict plant disease,but its determination under actual field conditions is a major challenge.In this study,a method for determining LWD using thermal infrare...Leaf wetness duration(LWD)is a critical parameter used to predict plant disease,but its determination under actual field conditions is a major challenge.In this study,a method for determining LWD using thermal infrared imaging was developed and applied to cucumber plants grown in a solar greenhouse.Thermal images of the plant leaves were captured using an infrared scanning camera,and a leaf wetness area segmentation method consisting of two procedures was applied.First,a color space conversion was performed automatically by an image-processing algorithm.Then,the K-means clustering algorithm was applied to enable the segmentation of the wetness area on the thermal image.Subsequently,to enable overall thermal image analysis,an initial leaf wetness threshold(LWT)of 5%was defined(where wetness values higher than 5%indicated that the leaf was in a wet state).The results of comparative experiments conducted using thermal images of plant leaves captured using an infrared scanning camera and human visual observation indicated that the estimated LWD values were generally higher than the observed LWD values,because slight leaf wetness condensations were overlooked by the human eye but detected by the infrared scanning camera.While these differences were not found to be statistically significant in this study,the proposed method for determining LWD using thermal infrared imaging may provide a new LWD detection method for cucumber and other plants grown in solar greenhouses.展开更多
In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzi...In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problezns during the process of heating. Moreover, an instru-ment for measuring wetness of wet steam flow was designed and made out. This instrument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal TUrbine Laboratory Xi’an Jiaotong University. By analyzing the relative error of the result, it was found that this instrument has fairly high accuracy it can be used as the prototype of practical instrument and has an important applicable value in engineering.展开更多
Using the data of summer(June—August)precipitation during the period of 1951—1990 in 14 stations over North China,the wetness probability(WP)series based on gamma distribution has been built.Main temporal and spatia...Using the data of summer(June—August)precipitation during the period of 1951—1990 in 14 stations over North China,the wetness probability(WP)series based on gamma distribution has been built.Main temporal and spatial char- acteristics for the series of WP in the stations are extracted by using empirical orthogonal functions(EOFs).The spatial patterns show that the dryness/wetness variations in the stations in the area are consistent with each other and its main characteristics can be represented by the WP series in Beijing. Having analysed the WP series of 120 years(1870—1989)in Beijing,the results show that the dry tendency has a re- sponse to the global warming.The variation of the dryness/wetness in the stations is associated with the temperature variation in the Northern Hemisphere.Their relation is negative.The degree of the reliance is associated with the century variation of the temperature.展开更多
With the support by the National Natural Science Foundation of China,the research team led by Prof.Liu HongYan(刘鸿雁)at the College of Urban and Environmental Sciences and MOE laboratory for Earth Surface Processes,P...With the support by the National Natural Science Foundation of China,the research team led by Prof.Liu HongYan(刘鸿雁)at the College of Urban and Environmental Sciences and MOE laboratory for Earth Surface Processes,Peking University,reported the compensation effect of extreme wetness for the growth loss in dry forests,which was published in Nature Communications(2019,doi:10.1038/s41467-018-08229-z).展开更多
A mathematical model for predicting the behavior of wet steam flow in the vicinity of the intake head of the sampling probe is presented. The vapor flow field and droplet trajectory in the calculated region have been ...A mathematical model for predicting the behavior of wet steam flow in the vicinity of the intake head of the sampling probe is presented. The vapor flow field and droplet trajectory in the calculated region have been obtained. The errors caused by non-isokinetic sampling for different conditions have been analyzed and the analytical results would provide useful data for the design and application of a heating method-based wetness measurement probe in practice.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.
文摘The paper presents an empirical method to calculate bow flare slamming pressure and the green water load. Many empirical formulae for various types of vessels have been provided by rules of ship classification societies. In the present work, attempt is made to develop generalized formulations for all types of displacement vessels. Extreme sea conditions are considered. Bow flare pressure is derived in terms of flare and waterline angles. Specific condition for limiting waterline angle is derived based on 2 D numerical simulations. Deck wetness is derived in terms of static and dynamic swell-up and the relative motion. Variation of static swell along the length is determined based on potential solution based analyses considering variation in vessels’ hull. 2 D wedge simulations are carried out to validate the formulation of dynamic swell-up. Results of the calculated bow flare and deck pressures are compared with various ship classification society formulations and the trends are found to be in good agreement in general barring at bow flare where lower pressure is found in most of the presented cases. Also IACS UR S21 A(2018) governing minimum pressure for deck scantlings is found to be conservative in few of the presented cases. Although scantlings assessment is not performed, the presented new formulations may help in realistic assessment of scantlings.
文摘Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetness. periodic variations of climate and interannual laws of variation. The discussion also covers the subjects of effects of El Nino. sunspot, predictors of general circulation on climatic variation of dryness and wetness. There arc main conclusions as follows: (1) The main cyclic variations of climate are 40 and 11 years in Kunming. the former being subject to that of El Nino and the latter to that of sunspots. They are two principal factors for periodic variations of dryness and wetness in Kunming. (2) A close relationship exists between interannual variations and general circulation factors for Kunming. The comprehensive influence as imposed by ENSO and allocations of W.C.E. patterns of circulation in the westerly are ma.tor weather and climate causes for the interannual variations of precipitation in Kunming.
基金Frontier Project of Nanjing Institute of Geography and Limnology,CAS, No.CXNIGLAS200814National Forestry Science and Technique Foundation during the 11th Five-Year Plan Period,No.2006BAD03A1601+1 种基金Project of Huaihe River Basin,No.HRM200708National Climate Center,China Meteorological Administration, No.CCSF2007-35
文摘Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and 24 months has been calculated. The SPI on 3, 6, 12 and 24 months present 4 wet periods prevailed during 1873-1885, 1904-1923, 1938-1960 and 1983-2005, and 3 dry episodes during 1886-1903, 1924-1937 and 1961-1982. Significant periods of higher wavelet power in the SPI-24 months occurred on the time scales of 2-7-year band in around 1880-1890, 1910-1950 and 1970-1990, and at 8-15-year band in 1920-1960 and 1965-2000 respectively. Periodicities in the SOl and ENSO indices are similar to those in SPI-24 months with little difference, namely, in the SPI-24 months, there are significant periods at the 2-7- and 8-15-year bands during 1930-1940. The periodicity components in individual SPI-24 months, SOl and ENSO indices are more complicated, showing the wetness and dryness variability in Shanghai is controlled by more than one physical factors. The research results indicate that the Shanghai area has experienced dryness and wetness variability on different time scales during the past 133 years.
文摘Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of dryness and wetness on a year-to-year basis are determined and preliminary features of dryness and wetness are discussed for the whole of the province and individual regions according to a 5-grade standard of division. The result has shown that there is on an average a rainfall of 1748 mm per year across the province, with four major centers of maxima (of annual rainfall over 2000 mm) at Enping, Qingyuan, Haifeng and Longmen. For the mean across the province, the years 1959. 1 961. 1973.1975, 1991 are anomalously wet and the years 1956, 1963, 1977 and 1991 are anomalously dry. of them, 1973 is the unusually wet year (with the absolute value of precipitation anomaly over twice as large as the standard deviation) and 1956 and 1963 are the usual dry years. For the occurrence frequency of unusually wetness and dryness over individual river valleys in the province, there are more years of dryness in the valleys of the Xijiang and Dongjiang Rivers. More years of wetness in that of the Jianjiang River, and only years of wetness instead of years of dryness in the valleys of Beijiang and Hanjiang Rivers.
基金Supported by the Innovation Research and Experiments for Young Scientists(2018009)the Project for the Transformation and Promotion of Agricultural Science and Technology Achievements of Tianjin(201801040)+1 种基金the Modern Agriculture Industry System for Vegetables of Tianjin(ITTVRS2017018)the Science and Technology Planning Project of Tianjin(17YFZCNC00280)
文摘In this study, artificial leaf resistance was used to simulate leaf wetness. Specific to the solar greenhouse environment in Tianjin, microclimate monitoring equipment was installed for the collection of temperature group and humidity group data, as well as solar radiation and leaf wetness in the greenhouse. In order to reduce the complexity of multivariate factor prediction and ensure the richness of selected data types, correlation analysis was made to the 2 groups of data, screening 5 000 groups of data, including the humidity group data RH, RH_(20), RH_(40), temperature group data T, T_(20), T_(40), and solar radiation W. The data were then analyzed by principal component analysis, screening out 4 groups of principal components to show the leaf wetness index.
文摘A variety of landscape properties have been modeled successfully using topographic indices such as topographic wetness index (TWI), defined as ln(a/tanβ), where a is the specific upslope area and β is the surface slope. In this study, 25 m spatial resolution from digital elevation models (DEM) data were used to investigate the scale-dependency of TWI values when converting DEMs to 50 and 100 m. To investigate the impact of different spatial resolution, the two lower resolution DEMs were interpolated to the original 25 m grid size. In addition, to compare different flow-direction algorithms, a second objective was to evaluate differences in spatial patterns. Thus the values of TWI were compared in two different ways: 1) distribution functions and their statistics;and 2) cell by cell comparison of DEMs with the same spatial resolution but different flow- directions. As in previous TWI studies, the computed specific upstream is smaller, on average, at higher resolution. TWI variation decreased with increasing grid size. A cell by cell comparison of the TWI values of the 50 and 100 m DEMs showed a low correlation with the TWI based on the 25 m DEM. The results showed significant differences between different flow-diretction algorithms computed for DEMs with 25, 50 and 100 m spatial resolution.
文摘Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually performed for dry road conditions. Based on the fact that roads are wet during a considerable time over the year and as part of the projects MIR/AM, ROLRES and ROSANNE, the TUG (Technical University of Gdafisk) in Poland and VTI (Swedish National Road and Transport Research Institute) in Sweden carried out trailer rolling resistance measurements on wet road surfaces to investigate water film influence on rolling resistance on different pavements. A specially-designed trailer to measure rolling resistance has been used. The test sections were both rural roads and an abandoned airfield equipped with water film sensors mounted in the pavement. Results indicate strong influence of test speed and water film depth, as well as influence of surface texture. The increase of rolling resistance on wet surfaces is caused by both hydrodynamic phenomena and cooling effect of water that decreases tire temperature thus increasing rolling resistance.
文摘Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation cover derived from satellite imagery to estimate soil surface wetness (triangle method) in Allahabad district. The pixel distributions create triangular shapes because the range of surface radiant temperature decreases as the amount of vegetation cover increases and sufficient number of pixels exists. A very weak correlation is found between the simulated soil surface wetness and ground measured soil moisture at deeper soil layers (R<sup>2</sup> < 0.15) on all the dates under investigation. This is because the drying rates at the surface discontinue to be linearly correlated to that at lower levels (depths). The standing water pixels distort the shape of the triangle especially at lower left edge of the triangle. This distortion is removable. The spatial and temporal inhomogeneity of soil surface wetness is examined.
基金funded by the Guangdong Natural Science Fund 2023—General Programme(Grant No.2023A1515011062)the Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology(2022B1212010002).
文摘As global temperature rises,the frequency of extreme climate events,e.g.,severe droughts and floods,has increased significantly and caused severe damage over the past years.To this regard,precipitation efficiency,a crucial meteorological parameter,could provide valuable insights for a better understanding of the patterns and characteristics of these extreme events.In this study,taking Guangdong province as an exemplary region,we first obtained long-term and high-resolution historical records of precipitation efficiency by integrating the observations from a dense network of Global Navigation Satellite System(GNSS)stations with precipitation data,and then characterized the extreme drought and wetness through climate indices.We found a distinct seasonal trend in precipitation efficiency in Guangdong,with annual fluctuations ranging from 10 to 25%.Notably,precipitation efficiency is higher in proximity to the Pearl River Delta Plain and gradually decreases towards the east and west.The occurrence of anomalous peaks and valleys in precipitation efficiency generally corresponds to dry and wet conditions,respectively.A total of 9 extreme wet events and 6 dry events occurred from January 2007 to May 2022,with durations from 3 to 6 months.Our results also demonstrated that both wet and dry frequencies exhibit an increasing trend with the expansion of the time scale,and the frequency of extreme events near the Pearl River Delta Plain surpasses that of other regions.Furthermore,the propagation time from meteorological anomalies to agricultural and hydrological anomalies is about 3 months.The periodic characteristics of meteorological anomalies are identified as the primary driver for other anomalous periodic patterns.Our work unveils the long-term dynamic behavior of precipitation efficiency,as well as the characteristics of extreme drought and wetness events in the regions characterized by intricate land–atmosphere interactions.
基金This study was supported by the China National Key R&D Program(2017YFE0122503)National Natural Science Foundation of China(31401683)+1 种基金Beijing Municipal Excellent Talents Project(2016000057592G260)and Postdoctoral Science Foundation of Beijing Academy of Agriculture and Forestry(968).The authors are also grateful to the research centre‘CIMEDES’at University of Almeria,Spain.
文摘Leaf wetness duration(LWD)is a critical parameter used to predict plant disease,but its determination under actual field conditions is a major challenge.In this study,a method for determining LWD using thermal infrared imaging was developed and applied to cucumber plants grown in a solar greenhouse.Thermal images of the plant leaves were captured using an infrared scanning camera,and a leaf wetness area segmentation method consisting of two procedures was applied.First,a color space conversion was performed automatically by an image-processing algorithm.Then,the K-means clustering algorithm was applied to enable the segmentation of the wetness area on the thermal image.Subsequently,to enable overall thermal image analysis,an initial leaf wetness threshold(LWT)of 5%was defined(where wetness values higher than 5%indicated that the leaf was in a wet state).The results of comparative experiments conducted using thermal images of plant leaves captured using an infrared scanning camera and human visual observation indicated that the estimated LWD values were generally higher than the observed LWD values,because slight leaf wetness condensations were overlooked by the human eye but detected by the infrared scanning camera.While these differences were not found to be statistically significant in this study,the proposed method for determining LWD using thermal infrared imaging may provide a new LWD detection method for cucumber and other plants grown in solar greenhouses.
文摘In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problezns during the process of heating. Moreover, an instru-ment for measuring wetness of wet steam flow was designed and made out. This instrument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal TUrbine Laboratory Xi’an Jiaotong University. By analyzing the relative error of the result, it was found that this instrument has fairly high accuracy it can be used as the prototype of practical instrument and has an important applicable value in engineering.
文摘Using the data of summer(June—August)precipitation during the period of 1951—1990 in 14 stations over North China,the wetness probability(WP)series based on gamma distribution has been built.Main temporal and spatial char- acteristics for the series of WP in the stations are extracted by using empirical orthogonal functions(EOFs).The spatial patterns show that the dryness/wetness variations in the stations in the area are consistent with each other and its main characteristics can be represented by the WP series in Beijing. Having analysed the WP series of 120 years(1870—1989)in Beijing,the results show that the dry tendency has a re- sponse to the global warming.The variation of the dryness/wetness in the stations is associated with the temperature variation in the Northern Hemisphere.Their relation is negative.The degree of the reliance is associated with the century variation of the temperature.
文摘With the support by the National Natural Science Foundation of China,the research team led by Prof.Liu HongYan(刘鸿雁)at the College of Urban and Environmental Sciences and MOE laboratory for Earth Surface Processes,Peking University,reported the compensation effect of extreme wetness for the growth loss in dry forests,which was published in Nature Communications(2019,doi:10.1038/s41467-018-08229-z).
文摘A mathematical model for predicting the behavior of wet steam flow in the vicinity of the intake head of the sampling probe is presented. The vapor flow field and droplet trajectory in the calculated region have been obtained. The errors caused by non-isokinetic sampling for different conditions have been analyzed and the analytical results would provide useful data for the design and application of a heating method-based wetness measurement probe in practice.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.