Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in ...Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in anexperiment with five treatments: deep-loosening tillage (DLT), traditional tillage (TT), plastic mulch (PM),straw mulch (SM) and plastic plus straw mulch (PSM). All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300 cm was determined before sowing. Results showed thatthe new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year, PM with no tillage played a significant role in storing and conserving precipitation, while ina rain-deficient year, the role was not significant. Due to evaporation, DLT did not promote the storage ofsoil moisture. SM was the best way to store and conserve soil moisture. In SM treatment the wheat yieldsincreased by more than 20%.展开更多
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut...Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.展开更多
Plant species of cropping systems may affect nitrous oxide (N2O) emissions. A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the re...Plant species of cropping systems may affect nitrous oxide (N2O) emissions. A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationships of soil and plant parameters with N2O emissions. The results indicated that N2O emissions from different wheat varieties ranged front 12 to 291 Ixg N2O-N m-2 h 1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m -2 In the rice season, it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190-216 mg N2O-N m-2. The seasonal integrated flux of N2O differed significantly among wheat and rice varieties showed higher seasonal N2O emissions. In the wheat season, N2O The wheat variety HUW 234 and rice variety Joymoti emissions correlated with soil organic carbon (SOC), soil NO3-N, soil temperature, shoot dry weight, and root dry weight. Among the variables assessed, soil temperature followed by SOC and soil NO3-N were considered as the important variables influencing N2O emission. N2O emission in the rice season was significantly correlated with SOC, soil NO3-N, soil temperature, leaf area, shoot dry weight, and root dry weight. The main driving forces influencing N2O emission in the rice season were soil NO3-N, leaf area, and SOC.展开更多
In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to ...In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to June, 1996. By analyzing the observed soil moisture data, it shows that there exists an obvious turning point of soil moisture pattern from one side of the interface to another. The effect of drier soil closer to the interface in winter wheat field is obvious, which is mainly due to the better ventilation condition near the interface in winter wheat filed than in alfalfa field. The irrigation in large scale is one of the most important factors to control the spatial pattern of soil moisture while the small scale human disturbing activity, such as the stealing event occurred during our observation, does not change the spatial pattern of soil moisture obviously. Latent heat, calculated by Bowen ratio method based on our observed micrometeorological data, is shown larger in alfalfa than that in winter wheat both at earring stage from May 8 to 10 and mature stage from June 11 to 14. This fact, together with the larger ground temperature and a little bit larger wind velocity in lower layer, explains that the soil is drier in alfalfa than in winter wheat from May 8 to 10. While for the period from June 11 to 14, irrigation's effect changes the natural interrelationship of soil moisture with meteorology and ground temperature.展开更多
As a conventional farming practice, tillage has lasted for thousands of years in Loess Plateau, China. Although recent studies show that tillage is a prominent culprit to soil carbon loss in croplands, few studies hav...As a conventional farming practice, tillage has lasted for thousands of years in Loess Plateau, China. Although recent studies show that tillage is a prominent culprit to soil carbon loss in croplands, few studies have investigated the influences of tillage on the responses of soil CO2 efflux (SCE) to soil temperature and moisture. Using a multi-channel automated CO2 efflux chamber system, we measured SCE in situ continuously before and after the conventional tillage in a rain fed wheat field of Loess Plateau, China. The changes in soil temperature and moisture sensitivities of SCE, denoted by the Q10 value and linear regression slope respectively, were compared in the same range of soil temperature and moisture before and after the tillage. The results showed that, after the tillage, SCE increased by 1.2-2.2 times; the soil temperature sensitivity increased by 36.1%-37.5%; and the soil moisture sensitivity increased by 140%-166%. Thus, the tillage-induced increase in SCE might partially be attributed to the increases in temperature and moisture sensitivity of SCE.展开更多
文摘Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in anexperiment with five treatments: deep-loosening tillage (DLT), traditional tillage (TT), plastic mulch (PM),straw mulch (SM) and plastic plus straw mulch (PSM). All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300 cm was determined before sowing. Results showed thatthe new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year, PM with no tillage played a significant role in storing and conserving precipitation, while ina rain-deficient year, the role was not significant. Due to evaporation, DLT did not promote the storage ofsoil moisture. SM was the best way to store and conserve soil moisture. In SM treatment the wheat yieldsincreased by more than 20%.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U22A20609)the National Key Research and Development Program of China(2021YFD1901102-4)+2 种基金the State Key Laboratory of Integrative Sustainable Dryland Agriculture(in preparation)the Shanxi Agricultural University,China(202003-3)the Open Fund from the State Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,China(2020002)。
文摘Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.
基金Supported by the Department of Science and Technology,Government of India (No. ES/71/07/2003)
文摘Plant species of cropping systems may affect nitrous oxide (N2O) emissions. A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationships of soil and plant parameters with N2O emissions. The results indicated that N2O emissions from different wheat varieties ranged front 12 to 291 Ixg N2O-N m-2 h 1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m -2 In the rice season, it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190-216 mg N2O-N m-2. The seasonal integrated flux of N2O differed significantly among wheat and rice varieties showed higher seasonal N2O emissions. In the wheat season, N2O The wheat variety HUW 234 and rice variety Joymoti emissions correlated with soil organic carbon (SOC), soil NO3-N, soil temperature, shoot dry weight, and root dry weight. Among the variables assessed, soil temperature followed by SOC and soil NO3-N were considered as the important variables influencing N2O emission. N2O emission in the rice season was significantly correlated with SOC, soil NO3-N, soil temperature, leaf area, shoot dry weight, and root dry weight. The main driving forces influencing N2O emission in the rice season were soil NO3-N, leaf area, and SOC.
基金Projects supported by the National Natural Science Foundation of China (Nos. 49471016, 49771019 and 49890330)
文摘In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to June, 1996. By analyzing the observed soil moisture data, it shows that there exists an obvious turning point of soil moisture pattern from one side of the interface to another. The effect of drier soil closer to the interface in winter wheat field is obvious, which is mainly due to the better ventilation condition near the interface in winter wheat filed than in alfalfa field. The irrigation in large scale is one of the most important factors to control the spatial pattern of soil moisture while the small scale human disturbing activity, such as the stealing event occurred during our observation, does not change the spatial pattern of soil moisture obviously. Latent heat, calculated by Bowen ratio method based on our observed micrometeorological data, is shown larger in alfalfa than that in winter wheat both at earring stage from May 8 to 10 and mature stage from June 11 to 14. This fact, together with the larger ground temperature and a little bit larger wind velocity in lower layer, explains that the soil is drier in alfalfa than in winter wheat from May 8 to 10. While for the period from June 11 to 14, irrigation's effect changes the natural interrelationship of soil moisture with meteorology and ground temperature.
基金supported by the National Natural Science Foundation of China (No.71003092)the National Basic Research Program (973) of China (No.2010CB833504-2)
文摘As a conventional farming practice, tillage has lasted for thousands of years in Loess Plateau, China. Although recent studies show that tillage is a prominent culprit to soil carbon loss in croplands, few studies have investigated the influences of tillage on the responses of soil CO2 efflux (SCE) to soil temperature and moisture. Using a multi-channel automated CO2 efflux chamber system, we measured SCE in situ continuously before and after the conventional tillage in a rain fed wheat field of Loess Plateau, China. The changes in soil temperature and moisture sensitivities of SCE, denoted by the Q10 value and linear regression slope respectively, were compared in the same range of soil temperature and moisture before and after the tillage. The results showed that, after the tillage, SCE increased by 1.2-2.2 times; the soil temperature sensitivity increased by 36.1%-37.5%; and the soil moisture sensitivity increased by 140%-166%. Thus, the tillage-induced increase in SCE might partially be attributed to the increases in temperature and moisture sensitivity of SCE.