The occurrence regularity of wheat midgec (Sitodiplosis mosellana Gehin) was investigated in 1986 -1991. One generation of this kind of insects emergies every year,and its cocoon lies dormant in soil through the winte...The occurrence regularity of wheat midgec (Sitodiplosis mosellana Gehin) was investigated in 1986 -1991. One generation of this kind of insects emergies every year,and its cocoon lies dormant in soil through the winter and summer (total for over ten months). The active larvae have a habit to move up and down with the changes of soil temperature. The field experiment over three years has showed that DDVp, a slow-release pesticide,is significantly effective in reduction of wheat loss due to this pest. Thirteen wheat varieties which are resistant or tolerant to this pest have been obtained in Hebei province. The main points of the technique described in this paper is put in a nutshell: relying mainly on growing the resistant varieties of wheat while making chemical control subsidiary. The chemical control is carried out at the pupal stage to kill the insects as many as possible,and at the adult stage to wipe out the remnants. Over the last three years,as a result of the utilization of this technique in展开更多
Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filte...Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filtering,binding and transporting hydropho-bic odorant molecules to specific receptors.To date,the molecular mechanisms underlying S.mosellana olfaction are poorly understood.Here,three S.mosellana antenna-specific OBP genes,SmosOBPII,16 and 21,were cloned and bacterially expressed.Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were in-vestigated using fluorescence competitive binding assays.Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily.Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol,ester and ketone com-pounds,and SmosOBP11 and 16 also selectively bound terpenoid compounds.In par-ticular,the three SmosOBPs had high binding affinities(Ki<20μmol/L)to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram(EAG)response fromfemale antennae.In addition,SmosOBP11 displayed significantly higher binding(Ki<8μmo/L)than SmosOBP16 and 21 to l-octen-3-ol,D-panthenol,a-pinene and heptyl acetate which elicited significant EAG response,suggesting that SmosOBP11 plays a ma-jor role in recognition and transportation of these volatiles.These findings have provided important insight into the molecular mechanism by which S.mosellana specifically rec-ognizes plant volatiles for host selection,and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.展开更多
文摘The occurrence regularity of wheat midgec (Sitodiplosis mosellana Gehin) was investigated in 1986 -1991. One generation of this kind of insects emergies every year,and its cocoon lies dormant in soil through the winter and summer (total for over ten months). The active larvae have a habit to move up and down with the changes of soil temperature. The field experiment over three years has showed that DDVp, a slow-release pesticide,is significantly effective in reduction of wheat loss due to this pest. Thirteen wheat varieties which are resistant or tolerant to this pest have been obtained in Hebei province. The main points of the technique described in this paper is put in a nutshell: relying mainly on growing the resistant varieties of wheat while making chemical control subsidiary. The chemical control is carried out at the pupal stage to kill the insects as many as possible,and at the adult stage to wipe out the remnants. Over the last three years,as a result of the utilization of this technique in
基金This research was supported by the National Natural Science Foundation of China(Grant No.31371933)the National Key Research and Development Program of China(Grant No.2018YFD0200402)Science and Technology Planning Project of Yangling Demonstration Zone,China(Grant No.2018NY-07).
文摘Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filtering,binding and transporting hydropho-bic odorant molecules to specific receptors.To date,the molecular mechanisms underlying S.mosellana olfaction are poorly understood.Here,three S.mosellana antenna-specific OBP genes,SmosOBPII,16 and 21,were cloned and bacterially expressed.Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were in-vestigated using fluorescence competitive binding assays.Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily.Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol,ester and ketone com-pounds,and SmosOBP11 and 16 also selectively bound terpenoid compounds.In par-ticular,the three SmosOBPs had high binding affinities(Ki<20μmol/L)to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram(EAG)response fromfemale antennae.In addition,SmosOBP11 displayed significantly higher binding(Ki<8μmo/L)than SmosOBP16 and 21 to l-octen-3-ol,D-panthenol,a-pinene and heptyl acetate which elicited significant EAG response,suggesting that SmosOBP11 plays a ma-jor role in recognition and transportation of these volatiles.These findings have provided important insight into the molecular mechanism by which S.mosellana specifically rec-ognizes plant volatiles for host selection,and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.