Micromachined piezoresistive flowmeters with four different types of sensing struc- tures have been designed,fabricated and tested.Piezoresistors were defined at the end of the sensors through p-diffusion,and their va...Micromachined piezoresistive flowmeters with four different types of sensing struc- tures have been designed,fabricated and tested.Piezoresistors were defined at the end of the sensors through p-diffusion,and their values were about 3.5kΩ.Wheatstone bridge was configured with the piezoresistors in order to measure the output response.The output voltage increases with increasing flow rate of air,obeying determined relationships.The testing results show that the sensors that are designed for measuring 10L/M in full operational range have desired sensitivities.The sensor chip is manufactured with bulk-micromachining technologies,requiring a set of seven masks.展开更多
A new system for measuring low-ohmic standard resistors through a dual current sources bridge is introduced.It is used for low resistance measurements from 1 mΩto 1Ωat 1∶1 ratio,which is suitable for the laboratori...A new system for measuring low-ohmic standard resistors through a dual current sources bridge is introduced.It is used for low resistance measurements from 1 mΩto 1Ωat 1∶1 ratio,which is suitable for the laboratories without cryogenic current comparators(CCC)or direct current comparators(DCC)bridges.Behavior of this bridge is evaluated by comparing its measured values with the unknown resistor values obtained by another method.The accuracy of the introduced bridge is in the level of 10-5 for the 1 mΩresistor,and in the level of 10-4 for the 10 mΩ,100 mΩand 1Ωresistors.Moreover,a dual voltage sources system for the measurement of DC standard resistors from 1 kΩto 100 MΩis also presented.In this system,a modification is made on the modified Wheatstone bridge to evaluate its performance by adding another digital multimeter to measure the ratio between the unknown and the standard resistors simultaneously.This bridge is verified by comparing the measured values of 10 kΩresistor obtained by the two methods with its actual value.The bridge accuracy is in the level of 10-6 except for the 1 kΩresistor,and the bridge asymmetry is also evaluated.It is found the asymmetry is in the level of 10-6 for the resistors from 10 kΩto 100 MΩand in the level of 10-5 for 1 kΩresistors.The introduced bridges operations are controlled by LabVIEW programs designed specially for this purpose,and the expanded uncertainty is also evaluated for all measurement results.展开更多
A compact acquisition system developed for a flexible large area monoport tactile surface is presented in this paper. This sensor requires a single port connection and avoids complicated matrix acquisition system and ...A compact acquisition system developed for a flexible large area monoport tactile surface is presented in this paper. This sensor requires a single port connection and avoids complicated matrix acquisition system and multiplexing. The tactile surface is based on a coplanar transmission line printed on a large area flexible substrate. Touching the waveguide generates a reflected signal. A harmonic analysis of this reflected signal at the line input port allows locating the touch event. A compact and low complexity acquisition system has been developed in order to demonstrate the principle and evaluate the feasibility of its integration on the sensor. Theoretical background, design and measurements on the overall sensor are exposed. The acquisition circuit imperfections have been demonstrated experimentally and correction methods have been proposed and implemented. Results are presented, and to assess the precision of the compact acquisition system, they are compared to reference measurements made with a Vector Network Analyzer.展开更多
Magnetic sensors based on tunneling magnetoresistance(TMR)effect exhibit high sensitivity,small size,and low power consumption.They have gained a lot of attention and have potential applications in various domains.Thi...Magnetic sensors based on tunneling magnetoresistance(TMR)effect exhibit high sensitivity,small size,and low power consumption.They have gained a lot of attention and have potential applications in various domains.This study first introduces the development history and basic principles of TMR sensors.Then,a comprehensive description of TMR sensors linearization and Wheatstone bridge configuration is presented.Two key performance parameters,the field sensitivity and noise mechanisms,are considered.Finally,the emerging applications of TMR sensors are discussed.展开更多
A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It i...A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It is demonstrated in theory that the output voltage signal is proportional to the electric field E, the temperature drift is about zero when the temperature is in the range from 200 to 400 K, and the doping concentration is in the range from 1 × 10^14 to 1 × 10^16 cm^-3. The experiment results indicate that the resolution of the sensor is about 3.27 mV for a 1000 V/m electric field at 300 K, and the voltage drift by an amount is about 47 V/m field signal when the degree temperature is in the range from 300 to 370 K, which is much smaller than the current drift of a single MOSFET which is about 10000 V/m field signal.展开更多
The anisotropic magnetoresistance film is an important core material for developing the magnetic sensors.Here,Ta(5)/Mg O(3)/Ni Fe(10)/Mg O(3)/Ta(3)multilayers(in nanometer)were prepared by magnetron sputtering and fur...The anisotropic magnetoresistance film is an important core material for developing the magnetic sensors.Here,Ta(5)/Mg O(3)/Ni Fe(10)/Mg O(3)/Ta(3)multilayers(in nanometer)were prepared by magnetron sputtering and further applied to construct a sensor element by combining with the Wheatstone bridge.The 1/f noise of the sensor element was greatly reduced by three orders of magnitude after annealing at 400℃for 7200 s,which was mainly due to the significant microstructural changes during the annealing.However,when the sensor element was applied to detect the magnetic signal of a magnetic code disk with 512 N-S magnetic poles,the output voltage signal of the sensor displayed a large fluctuation of±0.05 V.In order to reduce the voltage fluctuation,a magnetic sensor chip by using a parallelly arranged multipath Wheatstone bridges and auto-gain compensation structure was designed,and magnetic sensor elements and the high-performance computing drive module were prepared.The output voltage fluctuation of the magnetic sensor was reduced by about 90%and approached to±0.005 V.These findings provide an important basis for the practical application of Ni Fe-based magnetic sensing film materials.展开更多
The working state of drilling bit is a critical issue in the drilling process. The preliminary design of pressure and torque separation sensor for drilling bit is expatiated herein. The sensor unit is composed of the ...The working state of drilling bit is a critical issue in the drilling process. The preliminary design of pressure and torque separation sensor for drilling bit is expatiated herein. The sensor unit is composed of the elastic unit and the Wheatstone full bridge. Under composited load, the theoretical analysis about separating the axial force and torque of drilling bit is discussed firstly. The separation has been achieved by using the Wheatstone full bridge pasted onto the elastic unit. Then the transversal and axial strains distribution of elastic unit has been calculated and analyzed by ANSYS software, when the bit is under axial force and torque. Based on the calculation and analysis results, the sensitivity and accuracy of the sensor's whole measurement chain can be reckoned. Meanwhile, the calculation and analysis results can also give good suggestion about the positions where the strains gauge should be pasted. Finally, it has been proved that this solution can meet the preset requirements very well.展开更多
基金The project supported by the National "973" Project (TG1999033108)the National Natural Science Foundation of China (19928205,50131160739 and 10072068)
文摘Micromachined piezoresistive flowmeters with four different types of sensing struc- tures have been designed,fabricated and tested.Piezoresistors were defined at the end of the sensors through p-diffusion,and their values were about 3.5kΩ.Wheatstone bridge was configured with the piezoresistors in order to measure the output response.The output voltage increases with increasing flow rate of air,obeying determined relationships.The testing results show that the sensors that are designed for measuring 10L/M in full operational range have desired sensitivities.The sensor chip is manufactured with bulk-micromachining technologies,requiring a set of seven masks.
文摘A new system for measuring low-ohmic standard resistors through a dual current sources bridge is introduced.It is used for low resistance measurements from 1 mΩto 1Ωat 1∶1 ratio,which is suitable for the laboratories without cryogenic current comparators(CCC)or direct current comparators(DCC)bridges.Behavior of this bridge is evaluated by comparing its measured values with the unknown resistor values obtained by another method.The accuracy of the introduced bridge is in the level of 10-5 for the 1 mΩresistor,and in the level of 10-4 for the 10 mΩ,100 mΩand 1Ωresistors.Moreover,a dual voltage sources system for the measurement of DC standard resistors from 1 kΩto 100 MΩis also presented.In this system,a modification is made on the modified Wheatstone bridge to evaluate its performance by adding another digital multimeter to measure the ratio between the unknown and the standard resistors simultaneously.This bridge is verified by comparing the measured values of 10 kΩresistor obtained by the two methods with its actual value.The bridge accuracy is in the level of 10-6 except for the 1 kΩresistor,and the bridge asymmetry is also evaluated.It is found the asymmetry is in the level of 10-6 for the resistors from 10 kΩto 100 MΩand in the level of 10-5 for 1 kΩresistors.The introduced bridges operations are controlled by LabVIEW programs designed specially for this purpose,and the expanded uncertainty is also evaluated for all measurement results.
文摘A compact acquisition system developed for a flexible large area monoport tactile surface is presented in this paper. This sensor requires a single port connection and avoids complicated matrix acquisition system and multiplexing. The tactile surface is based on a coplanar transmission line printed on a large area flexible substrate. Touching the waveguide generates a reflected signal. A harmonic analysis of this reflected signal at the line input port allows locating the touch event. A compact and low complexity acquisition system has been developed in order to demonstrate the principle and evaluate the feasibility of its integration on the sensor. Theoretical background, design and measurements on the overall sensor are exposed. The acquisition circuit imperfections have been demonstrated experimentally and correction methods have been proposed and implemented. Results are presented, and to assess the precision of the compact acquisition system, they are compared to reference measurements made with a Vector Network Analyzer.
基金financially supported by Beijing Municipal Science and Technology Project(No.Z201100004220002)the International Collaboration Project B16001+1 种基金the Key Research and Development Program of Shandong Province of China(No.2020S020201-01621)the Magnetic Sensor Innovation Platform from Laoshan District。
文摘Magnetic sensors based on tunneling magnetoresistance(TMR)effect exhibit high sensitivity,small size,and low power consumption.They have gained a lot of attention and have potential applications in various domains.This study first introduces the development history and basic principles of TMR sensors.Then,a comprehensive description of TMR sensors linearization and Wheatstone bridge configuration is presented.Two key performance parameters,the field sensitivity and noise mechanisms,are considered.Finally,the emerging applications of TMR sensors are discussed.
文摘A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It is demonstrated in theory that the output voltage signal is proportional to the electric field E, the temperature drift is about zero when the temperature is in the range from 200 to 400 K, and the doping concentration is in the range from 1 × 10^14 to 1 × 10^16 cm^-3. The experiment results indicate that the resolution of the sensor is about 3.27 mV for a 1000 V/m electric field at 300 K, and the voltage drift by an amount is about 47 V/m field signal when the degree temperature is in the range from 300 to 370 K, which is much smaller than the current drift of a single MOSFET which is about 10000 V/m field signal.
基金financially supported by the National Key Research and Development Program of China(Nos.2019YFB2005800 and 2019YFB1309902)the National Science Foundation of China(Nos.51871017 and 51871018)+3 种基金Beijing Natural Science Foundation(No.2192031)the Science and Technology Innovation Team Program of Foshan(No.FSOAA-KJ919-44020087)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-011B1)the Foundation of Beijing Key Laboratory of Metallic Materials and Processing for Modern Transportation。
文摘The anisotropic magnetoresistance film is an important core material for developing the magnetic sensors.Here,Ta(5)/Mg O(3)/Ni Fe(10)/Mg O(3)/Ta(3)multilayers(in nanometer)were prepared by magnetron sputtering and further applied to construct a sensor element by combining with the Wheatstone bridge.The 1/f noise of the sensor element was greatly reduced by three orders of magnitude after annealing at 400℃for 7200 s,which was mainly due to the significant microstructural changes during the annealing.However,when the sensor element was applied to detect the magnetic signal of a magnetic code disk with 512 N-S magnetic poles,the output voltage signal of the sensor displayed a large fluctuation of±0.05 V.In order to reduce the voltage fluctuation,a magnetic sensor chip by using a parallelly arranged multipath Wheatstone bridges and auto-gain compensation structure was designed,and magnetic sensor elements and the high-performance computing drive module were prepared.The output voltage fluctuation of the magnetic sensor was reduced by about 90%and approached to±0.005 V.These findings provide an important basis for the practical application of Ni Fe-based magnetic sensing film materials.
基金the Fund of Chengdu University of Information Technology(No.379116)the Cross Fund of Chengdu University of Information Technology(No.724016)
文摘The working state of drilling bit is a critical issue in the drilling process. The preliminary design of pressure and torque separation sensor for drilling bit is expatiated herein. The sensor unit is composed of the elastic unit and the Wheatstone full bridge. Under composited load, the theoretical analysis about separating the axial force and torque of drilling bit is discussed firstly. The separation has been achieved by using the Wheatstone full bridge pasted onto the elastic unit. Then the transversal and axial strains distribution of elastic unit has been calculated and analyzed by ANSYS software, when the bit is under axial force and torque. Based on the calculation and analysis results, the sensitivity and accuracy of the sensor's whole measurement chain can be reckoned. Meanwhile, the calculation and analysis results can also give good suggestion about the positions where the strains gauge should be pasted. Finally, it has been proved that this solution can meet the preset requirements very well.