Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo-isopropoxide Y5O(OPri)13 as precursor (OPri = isopropxy). X-ray diffraction (XRD), transmission electron microsc...Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo-isopropoxide Y5O(OPri)13 as precursor (OPri = isopropxy). X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle size analyzer and photoluminescence (PL) spectroscopy have been used to characterize these powders. The as synthesized powders gave very sharp peak in the X-ray diffraction suggesting crystalline particles with average particle size between 28 - 51 nm for Eu+++ doped Y2O3 nanoparticles and 43 - 51 nm for Tb+++ doped Y2O3 nanoparticles annealed at 300℃ for 3 h, 4 h and 5 h, which could be unique in comparison to other reports. Transmission electron micrograph investigation of the particles shows single dispersed particles along with agglomerates. The ratio of intensities of transitions in the europium and terbium emission spectrum have been used as structural probe to indicate the local environment around Eu+++ and Tb+++ in the Y2O3 particles.展开更多
文摘Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo-isopropoxide Y5O(OPri)13 as precursor (OPri = isopropxy). X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle size analyzer and photoluminescence (PL) spectroscopy have been used to characterize these powders. The as synthesized powders gave very sharp peak in the X-ray diffraction suggesting crystalline particles with average particle size between 28 - 51 nm for Eu+++ doped Y2O3 nanoparticles and 43 - 51 nm for Tb+++ doped Y2O3 nanoparticles annealed at 300℃ for 3 h, 4 h and 5 h, which could be unique in comparison to other reports. Transmission electron micrograph investigation of the particles shows single dispersed particles along with agglomerates. The ratio of intensities of transitions in the europium and terbium emission spectrum have been used as structural probe to indicate the local environment around Eu+++ and Tb+++ in the Y2O3 particles.