Orthodontic treatment offers great advantages in improving facial and smile aesthetics, self-confidence and the function of the stomatognathic apparatus. The pursuit of these advantages makes use of orthodontic applia...Orthodontic treatment offers great advantages in improving facial and smile aesthetics, self-confidence and the function of the stomatognathic apparatus. The pursuit of these advantages makes use of orthodontic appliances that could be fixed or removable. However, it’s worth stating that these appliances interfere with tooth brushing, making it more difficult to brush teeth effectively. Orthodontics appliances therefore promote the accumulation of dental plaque, which results in both quantitative and qualitative changes in the oral microbiota, hence, exposing patients to several adverse effects such as White spot lesions, dental caries, periodontal pathologies and halitosis. For this reason, oral assessment of patients before, during and after treatment is necessary as well as oral hygiene instructions and motivation. Orthodontists therefore, should educate patients on oral and periodontal hygiene in order to control dental and periodontal complications. Prescriptions of plaque control materials adapted to each patient are done in order to optimize the final result and minimize unwanted complications.展开更多
White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phospha...White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP- rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P〉 0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P〉 0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times〉3 min 2 times〉 1 min 2 times〉6 min 1 time〉3 min 1 time〉 1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.展开更多
文摘Orthodontic treatment offers great advantages in improving facial and smile aesthetics, self-confidence and the function of the stomatognathic apparatus. The pursuit of these advantages makes use of orthodontic appliances that could be fixed or removable. However, it’s worth stating that these appliances interfere with tooth brushing, making it more difficult to brush teeth effectively. Orthodontics appliances therefore promote the accumulation of dental plaque, which results in both quantitative and qualitative changes in the oral microbiota, hence, exposing patients to several adverse effects such as White spot lesions, dental caries, periodontal pathologies and halitosis. For this reason, oral assessment of patients before, during and after treatment is necessary as well as oral hygiene instructions and motivation. Orthodontists therefore, should educate patients on oral and periodontal hygiene in order to control dental and periodontal complications. Prescriptions of plaque control materials adapted to each patient are done in order to optimize the final result and minimize unwanted complications.
基金supported by NIH R01 DE17974(Hockin HK Xu)National Science Foundation of China 81200820(to Xian-Ju Xie),81400487(to Lin Wang)+1 种基金Beijing Nova Program xx2014B060(to Xian-Ju Xie)University of Maryland School of Dentistry bridging fund(to Hockin HK Xu)
文摘White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP- rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P〉 0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P〉 0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times〉3 min 2 times〉 1 min 2 times〉6 min 1 time〉3 min 1 time〉 1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.