Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt...A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues...Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology...Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.展开更多
The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregul...The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability t...The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.展开更多
In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pa...In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pages. Our framework model consists of three sub-models: one for user file access, one for web pages, and one for storage servers. Web pages are assumed to consist of different types and sizes of objects, which are characterized using several categories: articles, media, and mosaics. The model is implemented with a discrete event simulation and then used to investigate the performance of our system over a variety of parameters in our model. Our performance measure of choice is mean response time and by varying the composition of web pages through our categories, we find that our framework model is able to capture a wide range of conditions that serve as a basis for generating a variety of user request patterns. In addition, we are able to establish a set of parameters that can be used as base cases. One of the goals of this research is for the framework model to be general enough that the parameters can be varied such that it can serve as input for investigating other distributed applications that require the generation of user request access patterns.展开更多
To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB ...To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB were investigated as alternative lithium salts to LiPF6 in non-aqueous electrolytes.LiFePO4/Li half cells using LiPF6,LiBF4-LiBOB and LiTFSI-LiBOB slats as lithium salts were investigated by galvanostatic cycling,cyclic voltammetry,thermogravimetric analysis.The results show that LiBF4-LiBOB and LiTFSI-LiBOB mixed salts are much more thermally stable than LiPF6.Corrosion of Al foil in the LiTFSI-based electrolytes can be suppressed successfully by the addition of LiBOB as a co-salt.The electrochemical performance of LiBF4-LiBOB and LiTFSI-LiBOB mixed salts based cells are both better than that of LiPF6-based cell.LiTFSI-LiBOB mixed salt based electrolyte is considered to be a very promising electrolyte candidate for Li-ion batteries that will be used in wide-temperature applications.展开更多
The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utili...The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.展开更多
[Objective] To breed and utilize the japonicalinous cytoplasmic male sterile (CMS) line Chunjiang 19A with wide compatibility and high outcrossing rate. [Method] Cbunjiang 16A was used as the female parent to cross ...[Objective] To breed and utilize the japonicalinous cytoplasmic male sterile (CMS) line Chunjiang 19A with wide compatibility and high outcrossing rate. [Method] Cbunjiang 16A was used as the female parent to cross with Indica-Japonica crossing material B125, which was used as male parent. Backcross breeding was contin- ued for consecutive generations to breed the CMS lines with wide compatibility and high outcrossing rate. [Result] Chunjiang 19A is a late medium Japonica CMS line with good fertility stability. The proportion of sterile plants and pollen abortion rates are 100% and the Cheng's index is 14. It is the japonicalinous CMS line with early flowering, partial stigma exsertion, high outcrossing rate, wide compatibility, high re- sistance to stripe disease and good combining ability. The hybrid rice combinations originated from Chunjiang 19A have strong tUlering ability, dominant heterosis, high resistance to stripe disease, great yield potential and good color change at mature stage. [Conclusion] The successful breeding of Chunjiang 19A laid good foundation for the breeding of Japonica hybrid rice and Indica-Japonica hybrid rice combinations with high seed production and dominant heterosis, showing a promising application prospect.展开更多
We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8...We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.展开更多
[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methe...[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methed] During 2013-2015, Jimai 22, a winter wheat cultivar, was taken as materials to explore effects of irrigation quantity and term on water consumption characters and yield of winter wheat by wide precision sowing. [Result] As irrigation water increased, water consumption and irrigation water's proportions were growing, but quantity and proportion of soil water consumption were both diminishing; seed yields all kept increasing upon irrigation, but water use efficiencies were decreasing. Given the same irrigation conditions, water consumption by wide precision sowing was more, but yield and water use efficiency were higher. [Conclusion] The practice of combining wide precision sowing and irrigation in jointing and flowering stages, based on yield, water use efficiency and economic profits, has the potential to create more yields and higher water use efficiency and suitable to be applied and promtoed in North China.展开更多
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金supported by the National Natural Science Foundation of the People's Republic of China“On disjoint path covers of graphs and related problems”(12261085)Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“On spanning wide diameter and spanning cycle ability of interconnection networks”(2021D01C116)。
文摘A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金Special Fund for Carbon Peak and Carbon Neutralization Scientific and Technological Innovation Project of Jiangsu Province,Grant/Award Number:BE2022042National Natural Science Foundation of China,Grant/Award Numbers:22201275,51873086,51673096,51873086,51673096+2 种基金the Project on the Enterprises-Universities-Research Cooperation of Kucap Smart Technology(Nanjing)Co.,Ltd.,Grant/Award Number:202240607Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23-1407Anhui Provincial Natural Science Foundation,Grant/Award Number:2208085QB32。
文摘Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金the National Natural Science Foundation of China(Nos.52125306 and 21875286)。
文摘Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.
文摘The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the researchers supporting project(PNURSP2024R435)and this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.
文摘In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pages. Our framework model consists of three sub-models: one for user file access, one for web pages, and one for storage servers. Web pages are assumed to consist of different types and sizes of objects, which are characterized using several categories: articles, media, and mosaics. The model is implemented with a discrete event simulation and then used to investigate the performance of our system over a variety of parameters in our model. Our performance measure of choice is mean response time and by varying the composition of web pages through our categories, we find that our framework model is able to capture a wide range of conditions that serve as a basis for generating a variety of user request patterns. In addition, we are able to establish a set of parameters that can be used as base cases. One of the goals of this research is for the framework model to be general enough that the parameters can be varied such that it can serve as input for investigating other distributed applications that require the generation of user request access patterns.
基金Project(2013JSJJ027)supported by the Teacher Research Fund of Central South University,China
文摘To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB were investigated as alternative lithium salts to LiPF6 in non-aqueous electrolytes.LiFePO4/Li half cells using LiPF6,LiBF4-LiBOB and LiTFSI-LiBOB slats as lithium salts were investigated by galvanostatic cycling,cyclic voltammetry,thermogravimetric analysis.The results show that LiBF4-LiBOB and LiTFSI-LiBOB mixed salts are much more thermally stable than LiPF6.Corrosion of Al foil in the LiTFSI-based electrolytes can be suppressed successfully by the addition of LiBOB as a co-salt.The electrochemical performance of LiBF4-LiBOB and LiTFSI-LiBOB mixed salts based cells are both better than that of LiPF6-based cell.LiTFSI-LiBOB mixed salt based electrolyte is considered to be a very promising electrolyte candidate for Li-ion batteries that will be used in wide-temperature applications.
基金supported by the National Basic Research Program (the 973 Program, No. 2007CB209601).
文摘The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.
基金Supported by the National High Technology Research and Development Program ofChina (863 Program) (2010AA101301)the Program of Breeding and Experimental Demonstration of Super Hybrid Rice in China from Ministry of Agriculture+1 种基金the 0406 Program of Zhejiang Provincethe Fundamental Research Fund of China National RiceResearch Institute (2009RG001-5)~~
文摘[Objective] To breed and utilize the japonicalinous cytoplasmic male sterile (CMS) line Chunjiang 19A with wide compatibility and high outcrossing rate. [Method] Cbunjiang 16A was used as the female parent to cross with Indica-Japonica crossing material B125, which was used as male parent. Backcross breeding was contin- ued for consecutive generations to breed the CMS lines with wide compatibility and high outcrossing rate. [Result] Chunjiang 19A is a late medium Japonica CMS line with good fertility stability. The proportion of sterile plants and pollen abortion rates are 100% and the Cheng's index is 14. It is the japonicalinous CMS line with early flowering, partial stigma exsertion, high outcrossing rate, wide compatibility, high re- sistance to stripe disease and good combining ability. The hybrid rice combinations originated from Chunjiang 19A have strong tUlering ability, dominant heterosis, high resistance to stripe disease, great yield potential and good color change at mature stage. [Conclusion] The successful breeding of Chunjiang 19A laid good foundation for the breeding of Japonica hybrid rice and Indica-Japonica hybrid rice combinations with high seed production and dominant heterosis, showing a promising application prospect.
文摘We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.
基金Shandong Province S&T Development Plan(2014GNC113001)Crop Biology National key Laboratory Open Project(2014KF11)~~
文摘[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methed] During 2013-2015, Jimai 22, a winter wheat cultivar, was taken as materials to explore effects of irrigation quantity and term on water consumption characters and yield of winter wheat by wide precision sowing. [Result] As irrigation water increased, water consumption and irrigation water's proportions were growing, but quantity and proportion of soil water consumption were both diminishing; seed yields all kept increasing upon irrigation, but water use efficiencies were decreasing. Given the same irrigation conditions, water consumption by wide precision sowing was more, but yield and water use efficiency were higher. [Conclusion] The practice of combining wide precision sowing and irrigation in jointing and flowering stages, based on yield, water use efficiency and economic profits, has the potential to create more yields and higher water use efficiency and suitable to be applied and promtoed in North China.