High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an init...Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction....The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental t...The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the fir...X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that format...The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.展开更多
The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is det...The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pet Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result.展开更多
The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provi...The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provide an additional capacity for Li storage,but it suffers from a severe capacity degradation.In this study,operando X-ray diffraction is carried out to investigate the structural evolutions and degradation mechanisms of LiMn2O4 in different voltage ranges.In the range of 3.0-4.3 V(vs.Li^+/Li),the LiMn2O4 cathode exhibits a low capacity but good cycling stability with cycles up to 100 cycles and the charge/discharge processes are associated with the reversible extraction/insertion of Li^+from/into LixMn2O4(0≤x≤1).In the range of 1.4-4.4 V(vs.Li^+/Li),a capacity higher than 200 mAh/g is achieved,but it rapidly decays during the cycling.The voltage plateau around 2.8 V(vs.Li^+/Li)is related to the transformation of the cubic LiMn2O4 phase to the tetragonal Li2Mn2O4 phase,which leads to the formation of cracks as well as the performance degradation.展开更多
Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radi...Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radial distribution function(RDF). The developed KURVLR program was employed for the theoretical investigation in consideration of the ionic hydration and ion association. Multi-peaks Gaussian fitting method was applied to deconvolving the overlapping bands of Differential radial distribution function(DRDF). The calculation of the geometric model shows that octahedrally six-coordinated Mg(H2O)62+, with an Mg2+…OW bond length of 0.201 nm dominates in the solutions. There exists contact ion-pair(CIP) in the more concentrated solution(1:18, H2O/salt molar ratio) with a coordination number of 0.8 and a characteristic Mg…S distance of 0.340 nm. The result indicates the hydrated SO42– ion happens in the solution. The S…OW bond distance was determined to be 0.382 nm with a coordination number of 13. The fraction of CIP increases significantly with the increasing concentration. The symmetry of the hydration structure of sulfate ion is lowered by forming complex with magnesium ion.展开更多
A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symme...A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.展开更多
Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser...Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2×10^(19)W/cm^(2)),which is essential for effectively generating K_(α)source in high-Z metal material.The produced copper K_(α)radiation yield reaches to 2.5×10^(8)photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kαemission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5)crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.展开更多
This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC a...This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.展开更多
This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for ...This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.展开更多
The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation(TMT) of zirconia restorations. Thirty-...The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation(TMT) of zirconia restorations. Thirty-six zirconia samples were milled and sintered to simulate core fabrication followed by exposure to various combinations of surface treatments including as-received(control),hydrofluoric acid(HF), application of liner plus firings, application of porcelain by manual layering and pressing with firing, plus accelerated aging. The quantity of transformed tetragonal to monoclinic phases was analyzed utilized an X-ray diffractometer and one-way analysis of variance was used to analyze data. The control samples as provided from the dental laboratory after milling and sintering process had no TMT(X m5 0). There was an effect on zirconia samples of HF application with TMT(X m5 0.8%) and liner plus HF application with TMT(X m5 8.7%). There was an effect of aging on zirconia samples(no veneering) with significant TMT(X m5 70.25%). Both manual and pressing techniques of porcelain applications reduced the TMT(manual, X m5 4.41%, pressing,X m5 11.57%), although there was no statistical difference between them. It can be concluded that simulated applications of porcelain demonstrated the ability to protect zirconia from TMT after aging with no effect of a liner between different porcelain applications.The HF treatment also caused TMT.展开更多
LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas wel...LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304033,12072328,and 11991073).
文摘Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金supported by National Natural Science Foundation of China(U2032118 and 42172048)Guizhou Provincial Science and Technology Projects(QKHPTRCYQK[2023]035 and QKHJC-ZK[2021]ZD042)+1 种基金Hundred Talents Program of the Chinese Academy of SciencesGuizhou Provincial 2020 and 2021 Science and Technology Subsidies(Nos.GZ2020SIG and GZ2021SIG)。
文摘The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金financially supported by the Natural Science Foundation of China(Grant 40872033)the Fundamental Research Funds for the Central Universities(to XL)the Natural Sciences and Engineering Research Council of Canada(to MF)
文摘The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
基金supported by the National Natural Science Foundation of China(No.40972033, 40872034,40572032)the 15th and 16th Laboratory Funds of Peking University
文摘X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
文摘The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.
基金supported by the Aeronautical Basic Science Foundation(No.00G53054)the National Natural Science Foundation of China(No.50171053).
文摘The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pet Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result.
基金the financial support by the National Natural Science Foundation of China (51871133, 51671115)support by the Department of Science and Technology of the Shandong Province for the Young Tip-Top Talent Support Project.
文摘The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provide an additional capacity for Li storage,but it suffers from a severe capacity degradation.In this study,operando X-ray diffraction is carried out to investigate the structural evolutions and degradation mechanisms of LiMn2O4 in different voltage ranges.In the range of 3.0-4.3 V(vs.Li^+/Li),the LiMn2O4 cathode exhibits a low capacity but good cycling stability with cycles up to 100 cycles and the charge/discharge processes are associated with the reversible extraction/insertion of Li^+from/into LixMn2O4(0≤x≤1).In the range of 1.4-4.4 V(vs.Li^+/Li),a capacity higher than 200 mAh/g is achieved,but it rapidly decays during the cycling.The voltage plateau around 2.8 V(vs.Li^+/Li)is related to the transformation of the cubic LiMn2O4 phase to the tetragonal Li2Mn2O4 phase,which leads to the formation of cracks as well as the performance degradation.
基金Supported by the Key Program of the National Natural Science Foundation of China(Nos.20836009 and 20873172)
文摘Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radial distribution function(RDF). The developed KURVLR program was employed for the theoretical investigation in consideration of the ionic hydration and ion association. Multi-peaks Gaussian fitting method was applied to deconvolving the overlapping bands of Differential radial distribution function(DRDF). The calculation of the geometric model shows that octahedrally six-coordinated Mg(H2O)62+, with an Mg2+…OW bond length of 0.201 nm dominates in the solutions. There exists contact ion-pair(CIP) in the more concentrated solution(1:18, H2O/salt molar ratio) with a coordination number of 0.8 and a characteristic Mg…S distance of 0.340 nm. The result indicates the hydrated SO42– ion happens in the solution. The S…OW bond distance was determined to be 0.382 nm with a coordination number of 13. The fraction of CIP increases significantly with the increasing concentration. The symmetry of the hydration structure of sulfate ion is lowered by forming complex with magnesium ion.
基金Supported by EPSRC,the UK Research Council(No. GRIR 6 5 787)
文摘A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0403301)Science Challenge Project(Grant No.TZ2018005)+1 种基金the National Natural Science Foundation of China(Grant Nos.11991073,11721404,11805266,11905289,and 61975229)Key Program of Chinese Academy of Sciences(Grant Nos.XDA25030400 and XDB17030500).
文摘Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2×10^(19)W/cm^(2)),which is essential for effectively generating K_(α)source in high-Z metal material.The produced copper K_(α)radiation yield reaches to 2.5×10^(8)photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kαemission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5)crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.
文摘This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875142,11079040,and 11075175)The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N20,KJCX2-SW-N03,and SYGNS04)
文摘This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.
基金supported in part by Deanship of Research, Taibah University, Kingdom of Saudi Arabia, and Matt Winstead, CDT, Vice President, Oral Arts Dental Labs, Huntsville, AL, USA
文摘The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation(TMT) of zirconia restorations. Thirty-six zirconia samples were milled and sintered to simulate core fabrication followed by exposure to various combinations of surface treatments including as-received(control),hydrofluoric acid(HF), application of liner plus firings, application of porcelain by manual layering and pressing with firing, plus accelerated aging. The quantity of transformed tetragonal to monoclinic phases was analyzed utilized an X-ray diffractometer and one-way analysis of variance was used to analyze data. The control samples as provided from the dental laboratory after milling and sintering process had no TMT(X m5 0). There was an effect on zirconia samples of HF application with TMT(X m5 0.8%) and liner plus HF application with TMT(X m5 8.7%). There was an effect of aging on zirconia samples(no veneering) with significant TMT(X m5 70.25%). Both manual and pressing techniques of porcelain applications reduced the TMT(manual, X m5 4.41%, pressing,X m5 11.57%), although there was no statistical difference between them. It can be concluded that simulated applications of porcelain demonstrated the ability to protect zirconia from TMT after aging with no effect of a liner between different porcelain applications.The HF treatment also caused TMT.
基金partially supported by the National Key Research and Development Program of China (2016YFB0100203)the National Natural Science Foundation of China (21673116,21633003)+1 种基金the Natural Science Foundation of Jiangsu Province of China (BK20160068)PAPD of Jiangsu Higher Education Institutions
文摘LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.