Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffic...Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
该文提出了一种基于魏格纳分布(Wigner-Ville Distributed,WVD)和重构时间采样(Reconstruction time sample,RTS)的空中机动目标检测和参数估计方法。该方法首先利用雷达回波的空域采样来重构时域采样,相当于增加了单个阵元的脉冲采样点...该文提出了一种基于魏格纳分布(Wigner-Ville Distributed,WVD)和重构时间采样(Reconstruction time sample,RTS)的空中机动目标检测和参数估计方法。该方法首先利用雷达回波的空域采样来重构时域采样,相当于增加了单个阵元的脉冲采样点数,然后再对重构后的数据进行WVD变换来估计目标的参数。该方法能够在方位信息未知,脉冲数较少的情况下有效地实现对机动目标的检测与参数估计。仿真结果验证了该方法的有效性。展开更多
为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号...为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号,对其差值信号进行WVD分析,准确提取损伤反射信号到达时间;其次,通过ATDM建立各传感器间的距离差值关系,确定孔损伤位置中心并预测最大损伤半径,从而实现对孔损伤关键指标的识别;最后,通过数值模拟进一步验证该方法,结果表明,基于WVD/ATDM的损伤识别技术不仅能准确识别出孔损伤位置,而且能够有效地识别损伤区域面积。展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation metho...Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.展开更多
A novel method of anti-reverberation based on the fractional Fourier transformation is presented. By virtue of the fact that it has a good focus property in the fractional Fourier domain, the linearly frequency modula...A novel method of anti-reverberation based on the fractional Fourier transformation is presented. By virtue of the fact that it has a good focus property in the fractional Fourier domain, the linearly frequency modulation (LFM) signal can be seperated from the reverberation through a swept-frequency filter. With the actual reverberation data and the LFM pulse for seperation, the good results are obtained: the reverbareation is largely removed, and relatively the better performance is shown under the lower signal reverberation ratio (SRR). Based on the theorical analyses and simulation results, two schemes for detecting targets are provided: one is the detection of the LFM echo from the target with a threshold by means of this method directly; the other is to detect the target by means of other methods, with this method performing pre-process to increase SRR, which need enough large SRR.展开更多
Data processing is a basic and crucial factor in seismic exploration,which can influence the effect of subsequent processing directly. Thus the selection of appropriate method for data processing is one of the most im...Data processing is a basic and crucial factor in seismic exploration,which can influence the effect of subsequent processing directly. Thus the selection of appropriate method for data processing is one of the most important tasks throughout the work. By simulating,the authors analyze and compare Fractional Fourier Transform( FRFT) and Wigner-Ville distribution( WVD),then summarize the similarities and advantages and disadvantages of the two methods. The results reveal that FRFT is more effective and suitable for application in seismic exploration than WVD.展开更多
基金supported by National Natural Science Foundation of China(Grant No.40874059)
文摘Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
文摘该文提出了一种基于魏格纳分布(Wigner-Ville Distributed,WVD)和重构时间采样(Reconstruction time sample,RTS)的空中机动目标检测和参数估计方法。该方法首先利用雷达回波的空域采样来重构时域采样,相当于增加了单个阵元的脉冲采样点数,然后再对重构后的数据进行WVD变换来估计目标的参数。该方法能够在方位信息未知,脉冲数较少的情况下有效地实现对机动目标的检测与参数估计。仿真结果验证了该方法的有效性。
文摘为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号,对其差值信号进行WVD分析,准确提取损伤反射信号到达时间;其次,通过ATDM建立各传感器间的距离差值关系,确定孔损伤位置中心并预测最大损伤半径,从而实现对孔损伤关键指标的识别;最后,通过数值模拟进一步验证该方法,结果表明,基于WVD/ATDM的损伤识别技术不仅能准确识别出孔损伤位置,而且能够有效地识别损伤区域面积。
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
文摘Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.
文摘A novel method of anti-reverberation based on the fractional Fourier transformation is presented. By virtue of the fact that it has a good focus property in the fractional Fourier domain, the linearly frequency modulation (LFM) signal can be seperated from the reverberation through a swept-frequency filter. With the actual reverberation data and the LFM pulse for seperation, the good results are obtained: the reverbareation is largely removed, and relatively the better performance is shown under the lower signal reverberation ratio (SRR). Based on the theorical analyses and simulation results, two schemes for detecting targets are provided: one is the detection of the LFM echo from the target with a threshold by means of this method directly; the other is to detect the target by means of other methods, with this method performing pre-process to increase SRR, which need enough large SRR.
文摘Data processing is a basic and crucial factor in seismic exploration,which can influence the effect of subsequent processing directly. Thus the selection of appropriate method for data processing is one of the most important tasks throughout the work. By simulating,the authors analyze and compare Fractional Fourier Transform( FRFT) and Wigner-Ville distribution( WVD),then summarize the similarities and advantages and disadvantages of the two methods. The results reveal that FRFT is more effective and suitable for application in seismic exploration than WVD.