High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is...High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.展开更多
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ...For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved.展开更多
This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation in...This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation included Alternating Current (AC)-Direct Current (DC)-AC conversion system, magnetic field modulation generator system, doubly-fed generator system etc. Among these, doubly-fed generator system is the trend. Where to build the wind farm is very important, so a perfect site is needed. Wind power generation will have a bright future. As long as the wind power can be linked to the grid in large scale.展开更多
The first phase project of Huitengxile Wind Power Generation Farm in Inner Mongolia, with nine 600 kW wind power generators installed, was formally put into commercial operation on November 28,
With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in po...With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.展开更多
The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind...The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind power generation and loss of load in generation deficit, we propose operation strategies for coordinating battery energy storage with wind power generation. The effects of the operation strategies on system reliability are evaluated by the developed computation model that represents the main aspects and operation limitations of the batteries. The performance evaluation of the power system is based on the composite reliability indices of loss of load probability(LOLP) and expected energy not supplied(EENS), which is calculated through sequential Monte Carlo simulation. Tests are performed by the developed model with a tutorial system consisting of five busbars and the IEEE RTS system. The results show that the use of large-scale batteries is an alternative to physically guarantee the wind power plants and to act as an operation reserve to reduce the risk of loss of load.展开更多
This paper proposes a novel state-dependent switched energy function(SdSEF)for general nonlinear autonomous systems,and constructs an SdSEF for doubly-fed induction generator(DFIG)-based wind power generation systems(...This paper proposes a novel state-dependent switched energy function(SdSEF)for general nonlinear autonomous systems,and constructs an SdSEF for doubly-fed induction generator(DFIG)-based wind power generation systems(WPGSs).Different from the conventional energy function,SdSEF is a piece-wise continuous function,and it satisfies the conditions of conventional energy functions on each of its continuous segments.SdSEF is designed to bridge the gap between the well-developed energy function theory and the description of system energy of complex nonlinear systems,such as power electronics converter systems.The stability criterion of nonlinear autonomous systems is investigated with SdSEF,and mathematical proof is presented.The SdSEF of a typical DFIGbased WPGS is simulated in the whole processes of a grid fault and fault recovery.Simulation results verify the negativeness of the derivative of each continuous segment of the SdSEF.展开更多
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel...In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.展开更多
This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A ch...This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A chronological multiple state probability model of tidal power generation system(TPGS)considering both forced outage rate(FOR)of the TPGS and random nature of tidal current speed is developed.In the evaluation of FORs of TPGS and WPGS(wind power generation system),the delivered power related failure rates of power electronic converters for TPGS and WPGS are considered.A chronological power output model of battery energy storage system(BESS)is derived.A hybrid system of tidal and wind generation powers with a BESS is used to demonstrate the effectiveness of the presented method.In case studies,the effects of various parameters on the system reliability are investigated.展开更多
This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and im...This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and improved in the system dynamic performance.The main idea is to set a soft dynamic boundary for the controlled variables around a reference point.Thus the controlled variables would lie on a point inside the boundary.The convergence of the operating point is ensured by following the Forward Euler method.The proposed control has been verified via simulation and experiments,compared with conventional sliding mode control(SMC)and proportional integral(PI)control.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of re...To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power.By studying the mathematical model of wind power output and calculating surplus wind power,as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank,an innovative capacity optimization allocation model was established.The objective of the model was to achieve the lowest total net present value over the entire life cycle.The model took into account the cost-benefit breakdown of equipment end-of-life cost,replacement cost,residual value gain,wind abandonment penalty,hydrogen transportation,and environmental value.The MATLAB-based platform invoked the CPLEX commercial solver to solve the model.Combined with the analysis of the annual average wind speed data from an offshore wind farm in Guangdong Province,the optimal capacity configuration results and the actual operation of the hydrogen production system were obtained.Under the calculation scenario,this hydrogen production system could consume 3,800 MWh of residual electricity from offshore wind power each year.It could achieve complete consumption of residual electricity from wind power without incurring the penalty cost of wind power.Additionally,it could produce 66,500 kg of green hydrogen from wind power,resulting in hydrogen sales revenue of 3.63 million RMB.It would also reduce pollutant emissions from coal-based hydrogen production by 1.5 tons and realize an environmental value of 4.83 million RMB.The annual net operating income exceeded 6 million RMB and the whole life cycle NPV income exceeded 50 million RMB.These results verified the feasibility and rationality of the established capacity optimization allocation model.The model could help advance power system planning and operation research and assist offshore wind farm operators in improving economic and environmental benefits.展开更多
The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a...The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.展开更多
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities ...On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities to the development of supercritical and ultra-supercritical pressure coal-fired power generation technologies and taking vigorous action to nuclear power generation technology within the following 5-10 years, exploiting wind power within the following 10-15 years, and suggested that the installed capacity of nuclear power reach 80-100 GW and that of wind power reach 50-80 GW by 2020.展开更多
Due to environmental conditions, the wind power generation is fluctuating in nature. This affects the electrical network interconnected with these systems. When the wind power generators are connected to the nonlinear...Due to environmental conditions, the wind power generation is fluctuating in nature. This affects the electrical network interconnected with these systems. When the wind power generators are connected to the nonlinear loads, there is distortion in the waveform. These distortions should be within limits according to national and international guidelines framed for power quality. This paper presents a mitigation technique with a shunt active filter, which reduces harmonic distortion to the permitted limit. Sine pulse width modulation (SPWM) control scheme is used to control shunt active filter. This technique eliminates harmonic distortion and maintains unity power factor. The simulation for proposed method is carried out using MATLAB/SIMULINK and results are validated.展开更多
This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of ...This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2682023CX019National Natural Science Foundation of China under Grant U23B6007 and Grant 52307141Sichuan Science and Technology Program under Grant 2024NSFSC0115。
文摘High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.
基金supported by the Science and Technology Major Special Projects Gansu(No.0801GKDA058)
文摘For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved.
文摘This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation included Alternating Current (AC)-Direct Current (DC)-AC conversion system, magnetic field modulation generator system, doubly-fed generator system etc. Among these, doubly-fed generator system is the trend. Where to build the wind farm is very important, so a perfect site is needed. Wind power generation will have a bright future. As long as the wind power can be linked to the grid in large scale.
文摘The first phase project of Huitengxile Wind Power Generation Farm in Inner Mongolia, with nine 600 kW wind power generators installed, was formally put into commercial operation on November 28,
文摘With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.
文摘The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind power generation and loss of load in generation deficit, we propose operation strategies for coordinating battery energy storage with wind power generation. The effects of the operation strategies on system reliability are evaluated by the developed computation model that represents the main aspects and operation limitations of the batteries. The performance evaluation of the power system is based on the composite reliability indices of loss of load probability(LOLP) and expected energy not supplied(EENS), which is calculated through sequential Monte Carlo simulation. Tests are performed by the developed model with a tutorial system consisting of five busbars and the IEEE RTS system. The results show that the use of large-scale batteries is an alternative to physically guarantee the wind power plants and to act as an operation reserve to reduce the risk of loss of load.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51807067 and No.U1866210Young Elite Scientists Sponsorship Program by CSEE under Grant No.CSEE-YESS-2018Fundamental Research Funds for the Central Universities of China under Grant No.2018MS77.
文摘This paper proposes a novel state-dependent switched energy function(SdSEF)for general nonlinear autonomous systems,and constructs an SdSEF for doubly-fed induction generator(DFIG)-based wind power generation systems(WPGSs).Different from the conventional energy function,SdSEF is a piece-wise continuous function,and it satisfies the conditions of conventional energy functions on each of its continuous segments.SdSEF is designed to bridge the gap between the well-developed energy function theory and the description of system energy of complex nonlinear systems,such as power electronics converter systems.The stability criterion of nonlinear autonomous systems is investigated with SdSEF,and mathematical proof is presented.The SdSEF of a typical DFIGbased WPGS is simulated in the whole processes of a grid fault and fault recovery.Simulation results verify the negativeness of the derivative of each continuous segment of the SdSEF.
基金This work was supported by National Key Research and Development Program of China(2018YFB0904000).
文摘In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.
基金supported in part by the National “111” Project of China under Grant B08036China State Grid Science and Technology Project(SGCQDK00DJJS1500056)
文摘This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A chronological multiple state probability model of tidal power generation system(TPGS)considering both forced outage rate(FOR)of the TPGS and random nature of tidal current speed is developed.In the evaluation of FORs of TPGS and WPGS(wind power generation system),the delivered power related failure rates of power electronic converters for TPGS and WPGS are considered.A chronological power output model of battery energy storage system(BESS)is derived.A hybrid system of tidal and wind generation powers with a BESS is used to demonstrate the effectiveness of the presented method.In case studies,the effects of various parameters on the system reliability are investigated.
基金This study has been funded by the Royal Commission for Jubail and Yanbu,Saudi Arabia and the University of Liverpool,UK.
文摘This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and improved in the system dynamic performance.The main idea is to set a soft dynamic boundary for the controlled variables around a reference point.Thus the controlled variables would lie on a point inside the boundary.The convergence of the operating point is ensured by following the Forward Euler method.The proposed control has been verified via simulation and experiments,compared with conventional sliding mode control(SMC)and proportional integral(PI)control.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金supported by Manage Innovation Project of China Southern Power Grid Co.,Ltd.(No.GZHKJXM20210232).
文摘To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power.By studying the mathematical model of wind power output and calculating surplus wind power,as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank,an innovative capacity optimization allocation model was established.The objective of the model was to achieve the lowest total net present value over the entire life cycle.The model took into account the cost-benefit breakdown of equipment end-of-life cost,replacement cost,residual value gain,wind abandonment penalty,hydrogen transportation,and environmental value.The MATLAB-based platform invoked the CPLEX commercial solver to solve the model.Combined with the analysis of the annual average wind speed data from an offshore wind farm in Guangdong Province,the optimal capacity configuration results and the actual operation of the hydrogen production system were obtained.Under the calculation scenario,this hydrogen production system could consume 3,800 MWh of residual electricity from offshore wind power each year.It could achieve complete consumption of residual electricity from wind power without incurring the penalty cost of wind power.Additionally,it could produce 66,500 kg of green hydrogen from wind power,resulting in hydrogen sales revenue of 3.63 million RMB.It would also reduce pollutant emissions from coal-based hydrogen production by 1.5 tons and realize an environmental value of 4.83 million RMB.The annual net operating income exceeded 6 million RMB and the whole life cycle NPV income exceeded 50 million RMB.These results verified the feasibility and rationality of the established capacity optimization allocation model.The model could help advance power system planning and operation research and assist offshore wind farm operators in improving economic and environmental benefits.
基金jointly funded by the National Key Research and Development Projects(No.2017YFE0132000)the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456)the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
文摘The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.
文摘On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities to the development of supercritical and ultra-supercritical pressure coal-fired power generation technologies and taking vigorous action to nuclear power generation technology within the following 5-10 years, exploiting wind power within the following 10-15 years, and suggested that the installed capacity of nuclear power reach 80-100 GW and that of wind power reach 50-80 GW by 2020.
文摘Due to environmental conditions, the wind power generation is fluctuating in nature. This affects the electrical network interconnected with these systems. When the wind power generators are connected to the nonlinear loads, there is distortion in the waveform. These distortions should be within limits according to national and international guidelines framed for power quality. This paper presents a mitigation technique with a shunt active filter, which reduces harmonic distortion to the permitted limit. Sine pulse width modulation (SPWM) control scheme is used to control shunt active filter. This technique eliminates harmonic distortion and maintains unity power factor. The simulation for proposed method is carried out using MATLAB/SIMULINK and results are validated.
文摘This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.