期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Research on Representative Engineering Applications of Anemometer Towers Location in Complex TopographyWind Resource Assessment
1
作者 Hao Liu Xiaoyang Zhang +3 位作者 Zhongjie Yan Yingjian Yang Qing’an Li Chang Cai 《Energy Engineering》 EI 2023年第1期163-179,共17页
The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topog... The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topography wind farms in Guangxi,Yunnan province in China.Firstly,we simulated the wind resource status of the anemometer tower in the Meteodyn WT software.Secondly,we compared the simulated wind resource with the actual measured data by the anemometer tower in the same situation.Thirdly,we analyzed the influence of anemometer tower location and quantity in the accuracy of wind resource assessment through the comparison results.The results showed that the range which the anemometer tower can represent is limited(<5 kilometers),and the prediction error more than 5%.Besides,the anemometer towers in special terrain areas(such as wind acceleration areas)cannot be used as a representative choice.The relative error of the simulated average annual wind speed by choose different number of anemometer towers is about 4%,and the grid-connected power generation more than 6%.The representative effect of anemometer towers is of crucial for improving the accuracy of wind resource assessment in engineering applications. 展开更多
关键词 wind resource assessment anemometer tower complex topography meteodyn WT
下载PDF
Wind Energy Data Analysis and Resource Mapping of Dangla,Gojjam,Ethiopia
2
作者 Belayneh Yitayew Wondwossen Bogale 《Energy Engineering》 EI 2022年第6期2513-2532,共20页
Energy is one of the most important factors in socio-economic development.The rapid increase in energy demand and air pollution has increased the number of ways to generate energy in the power sector.Currently,wind en... Energy is one of the most important factors in socio-economic development.The rapid increase in energy demand and air pollution has increased the number of ways to generate energy in the power sector.Currently,wind energy capacity in Ethiopia is estimated at 10,000 MW.Of these,however,only eight percent of its capacity has been used in recent years.One of the reasons for the low use of wind energy is the lack of accurate wind atlases in the country.Therefore,the purpose of this study is to develop an accurate wind atlas and review the wind resources using Wind Atlas Analysis and Application Program in Dangla so that the best sites used for the installation of wind farms can be easily identified.Wind climatology data,vector maps,and wind turbine data were used to model the Wind Atlas Analysis and Application Program.The wind data collected from National Meteorology Survey Agency over three years were used for the analysis.Besides,vector data for the survey area was prepared using Global Mapper V20.1.In this study,the Wind Atlas Analysis and Application Program tool was used to estimate wind resources.The wind resource map was developed at an altitude of 80 m above ground level,and a horizontal axis type wind generator called(i.e.,GridStreamer Vestas V1001.8 MW)was selected from the Wind Atlas Analysis and Application Program catalog to mimic the wind farm.The results obtained from the analysis of actual wind data showed that the minimum wind speed was 0.12083 m/s while the maximum wind speed was 9.96389 m/s.At a height of 10 m a.g.l.,the mean wind speed and wind power density were 1.8 m/s and 9 w/m2,respectively.The most common wind direction was also discovered to be 210 degrees.The maximum wind speed and capacity factor were available around hills,according to the wind resource map,and the net annual energy output of the Dangla wind farm at a turbine height of 80 m a.g.l.was found to be 282.726 GWh(or,32.27 MW).The farm’s capacity factor was also discovered to be 9.54 percent,indicating that the site is rated as low potential. 展开更多
关键词 wind resource assessment WASP Dangla wind farm national meteorology survey agency
下载PDF
Wind Shear Investigation for Site-Specific Wind Turbine Performance Assessment
3
作者 F. Castellani A. Vignaroli E. Piccioni 《Journal of Energy and Power Engineering》 2010年第12期1-8,共8页
The wind energy assessment studies are generally performed referring to neutral stability conditions for the atmosphere; this is considered a good hypothesis because neutral conditions characterize the high wind situa... The wind energy assessment studies are generally performed referring to neutral stability conditions for the atmosphere; this is considered a good hypothesis because neutral conditions characterize the high wind situations. However the increasing size of modem multi megawatt wind turbines allows to produce energy even in low wind regimes and non-neutral conditions can involve significant production period. In such situations the variations of the vertical wind shear can affect the energy production in a sensible way and it could be fundamental to investigate how atmospheric stability and orography can affect the wind profile and the power conversion. In this paper meso-scale numerical data, CFD modeling and remote sensed wind data were used in order to analyze such behavior and to understand how wind shear influences the energy content and the discussion about how to adjust the power curve to the site specific conditions. 展开更多
关键词 wind shear atmospheric stability remote sensing SODAR CFD power curve wind resource assessment energy yield.
下载PDF
Assessment of wind energy potential in China 被引量:5
4
作者 Zhu Rong Zhang De Wang Yuedong Xing Xuhuang Li Zechun 《Engineering Sciences》 EI 2009年第2期18-26,31,共10页
China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit... China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several activities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment(SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future. 展开更多
关键词 wind arias meso-scale numerical model numerical simulation for wind energy resource assessment wind energy potential area for wind energy potential wind energy availability
下载PDF
Analysis of Offshore Wind Power: Application to Southern Thailand
5
作者 J. Waewsak C. Kongruang +1 位作者 M. Landry Y. Gagnon 《Journal of Energy and Power Engineering》 2011年第11期1096-1101,共6页
This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine gene... This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh. 展开更多
关键词 Offshore wind energy annual energy production Weibull distribution wind turbine generator wind resource assessment.
下载PDF
Characteristics of Wind Speed Profiles under Complex Terrain Conditions in Loess Plateau
6
作者 Lei Yangna Sun Xian +1 位作者 Zhang Xia Sun Binbin 《Meteorological and Environmental Research》 CAS 2016年第1期5-9,共5页
To reveal the changing characteristics of wind speed with altitude in under complex terrain conditions in Loess Plateau in Northern Shaanxi, based on the complete data of wind speed profiles of six wind towers in the ... To reveal the changing characteristics of wind speed with altitude in under complex terrain conditions in Loess Plateau in Northern Shaanxi, based on the complete data of wind speed profiles of six wind towers in the region in a year, the diurnal, monthly, and seasonal variations of wind shear index of the wind towers as well as the changes of wind shear index with wind speed under complex terrain conditions were studied. The results showed that the wind shear index of each wind tower was positive, showing that wind speed tended to increase with the rising of altitude in most areas of Loess Plateau in Northern Shaanxi; terrain had obvious effects on wind speed profiles. The wind shear index of the wind towers was small during the day and large at night; the differences between day and night in the wind shear index of various wind towers were different; there were obvious seasonal variations in the wind shear index of the wind towers under different terrain conditions. With the increase of wind speed, the wind shear index of each wind tower increased firstly and then decreased, but the peaks of wind shear index of various wind towers ap- peared in different wind speed ranges. When wind speed varied from 3 to 12 m/s, wind shear index was larger than the comprehensive wind shear index of the wind towers, which is beneficial to the improvement of power generation of a wind power plant. Wind shear index can be used to assess wind resources of a wind power plant. 展开更多
关键词 Loess Plateau in Northern Shaanxi wind shear index assessment of wind resources China
下载PDF
Investigating the impacts of spatial-temporal variation features of air density on assessing wind power generation and its fluctuation in China 被引量:2
7
作者 REN GuoRui WANG Wei +3 位作者 WAN Jie HONG Feng YANG Ke YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第6期1797-1814,共18页
Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density ... Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density to assess wind resource.The present study investigates the estimation errors of the potential and fluctuation of wind resource caused by neglecting the spatial-temporal variation features of air density in China.The air density at 100 m height is accurately calculated by using air temperature,pressure,and humidity.The spatial-temporal variation features of air density are firstly analyzed.Then the wind power generation is modeled based on a 1.5 MW wind turbine model by using the actual air density,standard air densityρst,and local annual average air densityρsite,respectively.Usingρstoverestimates the annual wind energy production(AEP)in 93.6%of the study area.Humidity significantly affects AEP in central and southern China areas.In more than 75%of the study area,the winter to summer differences in AEP are underestimated,but the intra-day peak-valley differences and fluctuation rate of wind power are overestimated.Usingρsitesignificantly reduces the estimation error in AEP.But AEP is still overestimated(0-8.6%)in summer and underestimated(0-11.2%)in winter.Except for southwest China,it is hard to reduce the estimation errors of winter to summer differences in AEP by usingρsite.Usingρsitedistinctly reduces the estimation errors of intra-day peak-valley differences and fluctuation rate of wind power,but these estimation errors cannot be ignored as well.The impacts of air density on assessing wind resource are almost independent of the wind turbine types. 展开更多
关键词 air density spatial-temporal variation power curve wind resource assessment FLUCTUATION ERA-5
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部