期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Short-term Wind Speed Prediction with a Two-layer Attention-based LSTM 被引量:3
1
作者 Jingcheng Qian Mingfang Zhu +1 位作者 Yingnan Zhao Xiangjian He 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期197-209,共13页
Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,... Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,their use to predict wind speed remains one of the most challenging and less studied areas.This paper investigates the problem of predicting wind speeds for multiple sites using temporal and spatial features and proposes a novel two-layer attentionbased long short-term memory(LSTM),termed 2Attn-LSTM,a unified framework of encoder and decoder mechanisms to handle temporal-spatial wind speed data.To eliminate the unevenness of the original wind speed,we initially decompose the preprocessing data into IMF components by variational mode decomposition(VMD).Then,it encodes the spatial features of IMF components at the bottom of the model and decodes the temporal features to obtain each component's predicted value on the second layer.Finally,we obtain the ultimate prediction value after denormalization and superposition.We have performed extensive experiments for short-term predictions on real-world data,demonstrating that 2Attn-LSTM outperforms the four baseline methods.It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-temporal features. 展开更多
关键词 wind speed prediction temporal-spatial features VMD LSTM attention mechanism
下载PDF
Functional-type Single-input-rule-modules Connected Neural Fuzzy System for Wind Speed Prediction 被引量:1
2
作者 Chengdong Li Li Wang +2 位作者 Guiqing Zhang Huidong Wang Fang Shang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期751-762,共12页
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a... Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy. 展开更多
关键词 Fuzzy inference system(FIS) Iearning algorithm neural fuzzy system single input rule module wind speed prediction
下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
3
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
4
作者 Yingnan Zhao Guanlan Ji +2 位作者 Fei Chen Peiyuan Ji Yi Cao 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期719-735,共17页
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw... Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms. 展开更多
关键词 Short-term wind speed prediction variational mode decomposition attention mechanism SENet BiLSTM
下载PDF
Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network 被引量:5
5
作者 S.P.Mishra P.K.Dash 《International Journal of Automation and computing》 EI CSCD 2018年第1期66-83,共18页
An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo i... An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours. 展开更多
关键词 wind speed prediction pseudo inverse neural network kernel ridge regression nonlinear kernels firefly optimizatiotl.
原文传递
Wind speed prediction based on nested shared weight long short-term memory network
6
作者 Han Fengquan Han Yinghua +1 位作者 Lu Jing Zhao Qiang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第1期41-51,共11页
With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed... With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction. 展开更多
关键词 wind speed prediction feature extraction long short-term memory(LSTM)network shared weight forecast uncertainty
原文传递
Station-keeping control for a stratosphere airship via wind speed prediction approach
7
作者 Jihui Qiu Shaoping Shen Zhibin Li 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第4期464-477,共14页
Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed pred... Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed prediction based on the incremental extreme learning machine(I-ELM).Design/methodology/approach–First of all,the online prediction of wind speed is implemented by the I-ELM with rolling time.Second,the feedforward-feedback PID controller is designed through the position information of the airship and the predicted wind speed.In the end,the one-dimensional dynamic model of the stratosphere airship is built,and the controller is applied in the numerical simulation.Findings–Based on the conducted numerical simulations,some valuable conclusions are obtained.First,through the comparison between the predicted value and true value of the wind speed,the wind speed prediction based on I-ELM is very accurate.Second,the feedforward-feedback PID controller designed in this paper is very effective.Originality/value–This paper is very valuable to the research of a high-accuracy station-keeping control of stratosphere airship. 展开更多
关键词 Feedforward-feedback PID controller Incremental extreme learning machine Station-keeping control Stratosphere airship wind speed prediction
原文传递
Improved deep mixed kernel randomized network for wind speed prediction
8
作者 Vijaya Krishna Rayi Ranjeeta Bisoi +1 位作者 S.P.Mishra P.K.Dash 《Clean Energy》 EI CSCD 2023年第5期1006-1031,共26页
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera... Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods. 展开更多
关键词 deep neural network mixed kernel random vector functional network auto-encoder chaotic sine-cosine Levy flight optimization single and multistep wind speed prediction
原文传递
Prediction of Wind Speed Using a Hybrid Regression-Optimization Approach
9
作者 Bhuvana Ramachandran Anbazhagan Swaminathan 《Journal of Power and Energy Engineering》 2023年第7期21-35,共15页
Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to pr... Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to predict wind speed, and a hybrid optimization approach is one of them. In this paper, the hybrid optimization approach combines a multiple linear regression approach with an optimization technique to achieve better results. In the context of wind speed prediction, this hybrid optimization approach can be used to improve the accuracy of existing prediction models. Here, a Grey Wolf Optimizer based Wind Speed Prediction (GWO-WSP) method is proposed. This approach is tested on the 2016, 2017, 2018, and 2019 Raw Data files from the Great Lakes Environmental Research Laboratories and the National Oceanic and Atmospheric Administration’s (GLERL-NOAA) Chicago Metadata Archive. The test results show that the implementation is successful and the approach yields accurate and feasible results. The computation time for execution of the algorithm is also superior compared to the existing methods in literature. 展开更多
关键词 wind speed prediction Multiple Linear Regression Grey Wolf Optimizer Accuracy of Results wind Power
下载PDF
Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China 被引量:1
10
作者 许沛华 成驰 +3 位作者 王文 陈正洪 钟水新 张艳霞 《Journal of Tropical Meteorology》 SCIE 2023年第4期473-481,共9页
This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win... This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1). 展开更多
关键词 CMA-GD wind speed prediction wind farm root mean square error performance evaluation
下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction
11
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Composite Model-free Adaptive Predictive Control for Wind Power Generation Based on Full Wind Speed 被引量:2
12
作者 Shuangxin Wang Jianshen Li +2 位作者 Zhongsheng Hou Qingye Meng Meng Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第6期1659-1669,共11页
Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch ... Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch systems with speed disturbance suppression.First,an improved small-world neural network with topology optimization is used for 15-second-ahead forecasting of wind speed,whose rolling time is 1s,and the predicted value serves as a feedforward to obtain the early compensation variation of the pitch angle.Second,a function of the multi-objective optimization at full wind speed with optimal power point tracking and minimum control variation is constructed,and an advanced one-step adaptive predictive control algorithm for wind power is proposed based on the online estimation and prediction of the time-varying pseudo partial derivative(PPD).In addition,the compound MFAPC framework is synthetically obtained,whose closed-loop effectiveness is verified by a BP-built pitch system based on the SCADA data with all working conditions.Robustness of the schemes has been analyzed in terms of parametric uncertainties and different operating conditions,and a detailed comparison is finally presented.The results show that the proposed MFAPC can not only effectively suppress the random disturbance of wind speed,but also meet the stability of wind power and the security of grid-connections for all operating conditions. 展开更多
关键词 Feedforward correction full wind speed model-free adaptive predictive control(MFAPC) wind power wind speed prediction
原文传递
Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting Based on Time Series Decomposition and Gated Recurrent Unit 被引量:3
13
作者 Changtong Wang Zhaohua Liu +2 位作者 Hualiang Wei Lei Chen Hongqiang Zhang 《Complex System Modeling and Simulation》 2021年第4期308-321,共14页
Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed du... Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed due to its variable and random characteristics.For the objective to enhance the performance of forecasting short-term wind speed,this work puts forward a hybrid deep learning model mixing time series decomposition algorithm and gated recurrent unit(GRU).The time series decomposition algorithm combines the following two parts:(1)the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),and(2)wavelet packet decomposition(WPD).Firstly,the normalized wind speed time series(WSTS)are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal.The WPD algorithm conducts the second-order decomposition to the first component that contains complex and high frequency signal of raw WSTS.Finally,GRU networks are established for all the relevant components of the signals,and the predicted wind speeds are obtained by superimposing the prediction of each component.Results from two case studies,adopting wind data from laboratory and wind farm,respectively,suggest that the related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm,and the accuracy of short-time wind speed prediction can be heightened significantly mixing the time series decomposition algorithm and GRU networks. 展开更多
关键词 deep learning complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) gated recurrent unit(GRU) short term wavelet packet decomposition wind speed prediction
原文传递
Improving Wind Forecasts Using a Gale-Aware Deep Attention Network
14
作者 Keran CHEN Yuan ZHOU +4 位作者 Ping WANG Pingping WANG Xiaojun YANG Nan ZHANG Di WANG 《Journal of Meteorological Research》 SCIE CSCD 2023年第6期775-789,共15页
Numerical weather prediction of wind speed requires statistical postprocessing of systematic errors to obtain reliable and accurate forecasts.However,use of postprocessing models is often undesirable for extreme weath... Numerical weather prediction of wind speed requires statistical postprocessing of systematic errors to obtain reliable and accurate forecasts.However,use of postprocessing models is often undesirable for extreme weather events such as gales.Here,we propose a postprocessing algorithm based on a gale-aware deep attention network to simultaneously improve wind speed forecasts and gale area warnings.Specifically,the algorithm includes both a galeaware loss function that focuses the model on potential gale areas,and an observation station supervision strategy that alleviates the problem of missing extreme values caused by data gridding.The effectiveness of the proposed model was verified by using data from 235 wind speed observation stations.Experimental results show that our model can produce wind speed forecasts with a root-mean-square error of 1.1547 m s^(-1),and a Hanssen–Kuipers discriminant score of 0.517,performance that is superior to that of the other postprocessing algorithms considered. 展开更多
关键词 wind speed prediction deep attention network numerical model three-dimensional(3D)fully convolutional network attention mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部