期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Wind tunnel tests on aerodynamic characteristics of vehicles on same-storey highway and rail bridge under crosswind
1
作者 ZOU Yun-feng XUE Fan-rong +2 位作者 HE Xu-hui HAN Yan LIU Qing-kuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2513-2531,共19页
In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck a... In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck and CRH2 high-speed train as research targets.Wind tunnel experiments are performed to investigate shielding effects of trains on aerodynamic characteristics of trucks.The results show that aerodynamic interference between trains and trucks varies with positions of trains(upstream,downstream)and trucks(upwind,downwind)and numbers of trains.To summarize,whether the train is upstream or downstream of tracks has basically no effect on aerodynamic forces,other than moments,of a truck driving on windward sides of bridges(upwind).In contrast,the presence of trains on the bridge deck has a significant impact on aerodynamic characteristics of a truck driving on leeward sides(downwind)at the same time.The best shielding effect on lateral forces of trucks occurs when the train is located downstream of tracks.Finally,the pressure measuring system shows that only lift forces on trains are affected by trucks,while other forces and moments are primarily affected by adjacent trains. 展开更多
关键词 same-storey highway and rail bridge container truck CRH2 high-speed train aerodynamic characteristics wind tunnel test CROSSwind
下载PDF
Protective benefits of HDPE board sand fences in an environment with variable wind directions on Gobi surfaces:wind tunnel study
2
作者 ZHANG Kai TIAN Jianjin +4 位作者 LIU Benli ZHAO Yanhua ZHANG Hailong WANG Zhenghui DENG Yuhui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3353-3367,共15页
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot... The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions. 展开更多
关键词 Variable wind directions Blown sand control wind tunnel tests HDPE board sand fences
下载PDF
Derivation and validation of a similarity law for free-flight wind tunnel tests of parallel stage separation
3
作者 Zhiming CHEN Fei XUE +4 位作者 Haichuan YU Yuchao WANG Zenghui JIANG Wei LU Lei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期91-100,共10页
Aiming at the safety problem of the stage separation of parallel reusable high-speed air vehicles,this paper studies the unsteady test method and focuses on deriving a similarity law of parallel stage separation free-... Aiming at the safety problem of the stage separation of parallel reusable high-speed air vehicles,this paper studies the unsteady test method and focuses on deriving a similarity law of parallel stage separation free-flight wind tunnel tests.The new similarity law considers the influences of aerodynamic force and gravity on the motions of the two stages,as well as the influence of aerodynamic interference between the two stages on each other’s motion.From the perspective of multiangle physical equations,the conditions to ensure that the two-stage separation trajectory of a wind tunnel test is similar to that of a real air vehicle are derived innovatively,so as to ensure the authenticity and credibility of wind tunnel test results.The similarity law is verified by an HIFiRE-5 air vehicle,and the separation trajectories of wind tunnel tests and the real air vehicle are obtained by numerical simulation.The research shows that the similarity law derived in this paper can ensure that wind tunnel free-flight tests have the ability to predict the two-stage separation characteristics of real parallel vehicles.By analyzing the separation trajectory curve of the typical state,it is found that the new method can ensure that the trajectory error of a wind tunnel test does not exceed 1%,which indicates that this method is credible.The establishment of the new method lays the foundation for subsequent wind tunnel tests and provides support for research on the safety of the stage separation of parallel reusable air vehicles. 展开更多
关键词 Droptesting in wind tunnel Free-flight wind tunnel test Multi-body separation Parallel stage separation Similaritylaw
原文传递
Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II- Experimental validation using Infra-Red transition measurement from Wind Tunnel tests 被引量:11
4
作者 Andreea Koreanschi Oliviu Sugar Gabor +5 位作者 Joran Acotto Guillaume Brianchon Gregoire Portier Ruxandra Mihaela Botez Mahmoud Mamou Youssef Mebarki 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期164-174,共11页
In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircr... In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house' genetic algorithm was an appropriate tool in improving various aspects of a wing's aerodynamic performances. 展开更多
关键词 Drag reduction Infra-red tests Morphing wing OPTIMIZATION wind tunnel tests
原文传递
Effects of sand sedimentation and wind erosion around sand barrier:Numerical simulation and wind tunnel test studies 被引量:4
5
作者 ZHANG Kai ZHANG Hai-long +3 位作者 DENG Yu-hui QU Jian-jun WANG Zheng-hui LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第4期962-978,共17页
Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critic... Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best. 展开更多
关键词 Sand sedimentation wind erosion Numerical simulation wind tunnel test
下载PDF
Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing 被引量:8
6
作者 Michel Joёl Tchatchueng Kammegne Ruxandra Mihaela Botez +2 位作者 Lucian Teodor Grigorie Mahmoud Mamou Youssef Mebarki 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期561-576,共16页
In aircraft wing design,engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio.Conventional control surfaces such as flaps,ailerons,variable wi... In aircraft wing design,engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio.Conventional control surfaces such as flaps,ailerons,variable wing sweep and spoilers are used to trim the aircraft for other flight conditions.The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings.This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure.The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines.The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing,which is equipped with an aileron.The upper surface of the wing is a flexible one,being closed to the wing tip;the flexible skin is made of light composite materials.The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime.The actuators transform the torque into vertical forces.Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws.The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved.The four vertical displacements of the actuators,correlated with the new shape of the wing,are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions.The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition.The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demonstrated experimentally through bench and wind tunnel tests of the morphing wing model. 展开更多
关键词 Actuators CONTROL Experimental validation Morphing wing wind tunnel test
原文传递
Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control 被引量:5
7
作者 Bi Ying Xie Changchuan +1 位作者 An Chao Yang Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期292-309,共18页
An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibra... An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton's principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation(GLA) control system is proposed. The gust load alleviation system employs classic propor tional-integral-derivative(PID) controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%. 展开更多
关键词 Active control Aeroelastic wing Gust load alleviation Gust response Piezoelectric actuators wind tunnel test
原文传递
Mach Number Prediction for a Wind Tunnel Based on the CNN-LSTM-Attention Method
8
作者 ZHAO Luping WU Kunyang 《Instrumentation》 2023年第4期64-82,共19页
The test section’s Mach number in wind tunnel testing is a significant metric for evaluating system performance.The quality of the flow field in the wind tunnel is contingent upon the system's capacity to maintai... The test section’s Mach number in wind tunnel testing is a significant metric for evaluating system performance.The quality of the flow field in the wind tunnel is contingent upon the system's capacity to maintain stability across various working conditions.The process flow in wind tunnel testing is inherently complex,resulting in a system characterized by nonlinearity,time lag,and multiple working conditions.To implement the predictive control algorithm,a precise Mach number prediction model must be created.Therefore,this report studies the method for Mach number prediction modelling in wind tunnel flow fields with various working conditions.Firstly,this paper introduces a continuous transonic wind tunnel.The key physical quantities affecting the flow field of the wind tunnel are determined by analyzing its structure and blowing process.Secondly,considering the nonlinear and time-lag characteristics of the wind tunnel system,a CNN-LSTM model is employed to establish the Mach number prediction model by combining the 1D-CNN algorithm with the LSTM model,which has long and short-term memory functions.Then,the attention mechanism is incorporated into the CNN-LSTM prediction model to enable the model to focus more on data with greater information importance,thereby enhancing the model's training effectiveness.The application results ultimately demonstrate the efficacy of the proposed approach. 展开更多
关键词 wind tunnel Test Mach Number Prediction CNN-LSTM Attention Mechanism
下载PDF
Design and Wind Tunnel Study of a Top-mounted Diverterless Inlet 被引量:18
9
作者 谭慧俊 郭荣伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期72-78,共7页
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top... Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen. 展开更多
关键词 top-mounted inlet diverterless inlet unmanned air vehicle DESIGN wind tunnel test
下载PDF
An Investigation into the Effects of the Reynolds Number on High-Speed Trains Using a Low Temperature Wind Tunnel Test Facility 被引量:6
10
作者 Yundong Han Dawei Chen +1 位作者 Shaoqing Liu Gang Xu 《Fluid Dynamics & Materials Processing》 EI 2020年第1期1-19,共19页
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha... A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re. 展开更多
关键词 High-speed train wind tunnel test reynolds number effect aerodynamic performance yaw angle
下载PDF
Aerodynamic coefficient of vehicle-bridge system by wind tunnel test 被引量:2
11
作者 周立 葛耀君 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期872-877,共6页
The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c... The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge. 展开更多
关键词 vehicle-bridge svstem section model three comnonents of aerodynamic force wind tunnel test
下载PDF
Measurements of Wind Loads on Side-by-Side Semi-Submersibles in A Wind Tunnel 被引量:1
12
作者 DONG Qing GUO Xiao-xian +2 位作者 YANG Jian-min LU Hai-ning HUANG Longwei 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期531-543,共13页
The multi-body system has been a popular form for offshore operations in terms of high efficiency.The wind effects are crucial which directly affect the relative positions of floating bodies and operating security.In ... The multi-body system has been a popular form for offshore operations in terms of high efficiency.The wind effects are crucial which directly affect the relative positions of floating bodies and operating security.In this study,the aerodynamic characteristics for two coupled semi-submersibles were analyzed in a wind tunnel to fill the gaps in literature related to the wind sheltering on offshore platforms.The influences of separation distance were also investigated.According to the results,substantial shielding effects were observed and wind forces on the shielded vessel decreased dramatically:a reduction in the transverse force could be up to 74%.Moreover,the longitudinal wind load was amplified by the platform abreast in a side-by-side configuration.As expected,the interference level became more pronounced with a decreasing separation distance.For cases in which wind interaction decayed rapidly with distance,logarithmic functions were preferable for describing the relationship between them.Whereas linear fitting was reasonable for the transverse wind force when there was still evident sheltering at a quite large distance.The length of shielding area was another important factor that there was approximately a linear relationship between it and the shielding level for two platforms in close proximity at various wind attack angles.Based on the two parameters,a preliminary wind loads estimation method considering shielding effects was proposed.This approach can aid the industry to have a qualitative assessment of wind sheltering especially at early stages. 展开更多
关键词 wind loads side-by-side shielding effect wind tunnel test
下载PDF
Wind tunnel study of aerodynamic wind loading on middle pylon of Taizhou Bridge 被引量:1
13
作者 Zhang Zhen Ma Rujin +1 位作者 Hu Xiaohong Chen Airong 《Engineering Sciences》 EI 2011年第2期69-73,共5页
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea... Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns. 展开更多
关键词 wind tunnel test aerodynamic force coefficient interference effects segment sectional model tests middle pylon Taizhou Bridge
下载PDF
A Wind Tunnel Two-Dimensional Parametric Investigation of Biplane Configurations 被引量:1
14
作者 Miguel Angel Barcala-Montejano Angel Antonio Rodriguez-Sevillano Maria Elena Rodriguez-Rojo Sara Morales-Serrano 《Journal of Mechanics Engineering and Automation》 2014年第5期412-421,共10页
This paper presents an experimental and systematic investigation about how geometric parameters on a biplane configuration have an influence on aerodynamic parameters. This experimental investigation has been develope... This paper presents an experimental and systematic investigation about how geometric parameters on a biplane configuration have an influence on aerodynamic parameters. This experimental investigation has been developed in a two-dimensional approach. Theoretical studies about biplanes configurations have been developed in the past, but there is not enough information about experimental wind tunnel data at low Reynolds number. This two-dimensional study is a first step to further tridimensional investigations about the box wing configuration. The main objective of the study is to find the relationships between the geometrical parameters which present the best aerodynamic behavior: the highest lift, the lowest drag and the lowest slope of the pitching moment. A tridimensional wing-box model will be designed following the pattern of the two dimensional study conclusions. It will respond to the geometrical relationships that have been considered to show the better aerodynamic behavior. This box-wing model will be studied in the aim of comparing the advantages and disadvantages between this biplane configuration and the plane configuration, looking for implementing the box-wing in the UAV's field. Although the box wing configuration has been used in a small number of existing UAV, prestigious researchers have found it as a field of high aerodynamic and structural potential. 展开更多
关键词 Biplane TWO-DIMENSIONAL box-wing aerodynamic behavior wind tunnel test.
下载PDF
Wind tunnel test and numerical simulation of wind pressure on a high-rise building 被引量:1
15
作者 AL ZOUBI Feras 《Journal of Chongqing University》 CAS 2010年第1期47-53,共7页
We carried out a wind tunnel test to measure cladding loads for a high-rise building of 295 m in height, which would be located in the business center of Chongqing Municipality, P. R. China. The rigid model was used t... We carried out a wind tunnel test to measure cladding loads for a high-rise building of 295 m in height, which would be located in the business center of Chongqing Municipality, P. R. China. The rigid model was used to determine fluctuating local pressures on the exterior surfaces of the building. The wind tunnel test results show the cr/tical zone of wind pressures on building surfaces in both standalone and interference conditions. The computational fluid dynamics (CFD) was conducted by using the FLUENT Code to compare with the wind tunnel test results, and the steady three-dimensional turbulent flow with Realizable k-ε as a turbulence model was used. The CFD results are agree with the wind tunnel test results in regards to distributions of wind pressures over a high-rise building's surfaces. 展开更多
关键词 comoutational fluid dynamics: wind oressure: high-rise building: wind tunnel test
下载PDF
Design of Scale Model Mechanism in Low Speed Wind Tunnel 被引量:1
16
作者 AHMAD Aldarouich 《Computer Aided Drafting,Design and Manufacturing》 2008年第2期57-64,共8页
Motion control can be considered as the synergistic collaboration of mechanical and electrical engineering, computer science and information technology to apply a controlled force to achieve useful motion in fluid or ... Motion control can be considered as the synergistic collaboration of mechanical and electrical engineering, computer science and information technology to apply a controlled force to achieve useful motion in fluid or soiled electromechanical systems. With the development of computer, electronics, and automatic control theory, motion control comes to a new stage. Great applications are based on the characteristics, stemming from advantages of electronics and modern control technology achievements, having a very good load matching property. Currently, microprocessor-based controllers are invariably used in most applications of drive electronics. The object of this work is to design a position control mechanism system, which can be used in test section of low speed wind tunnel. System load specifications and performance requirements are given. A comprehensive study of mathematical modeling of the mechanism components is given. Procedure for selection of various components with optimum parameters is discussed. After selection and calculation of system parameters to meet the performance requirements, a PID control method is adopted. 展开更多
关键词 position control servo system proportional-integral-differential control wind tunnel test MATLAB
下载PDF
Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology
17
作者 YAN Ping WANG Xiaoxu +2 位作者 ZHENG Shucheng WANG Yong LI Xiaomei 《Journal of Arid Land》 SCIE CSCD 2022年第9期1009-1021,共13页
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Auton... The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring. 展开更多
关键词 3D laser scanning technology wind erosion wind tunnel test wind erosion depth MICROTOPOGRAPHY soil hardness
下载PDF
Experimental Investigation of Reynolds Number Effect on Wind Turbine Profiles in the Cryogenic Wind Tunnel Cologne DNW-KKK 被引量:1
18
作者 RUdiger Rebstock Junnai Zhai Alois P. Schaffarczy 《Journal of Energy and Power Engineering》 2013年第10期1957-1965,共9页
Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile t... Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile test data should be available. A suitable facility for testing wind turbine profiles at high Reynolds numbers is the Cryogenic Wind Tunnel Cologne DNW-KKK. By means of injecting liquid nitrogen the tunnel can be cooled down to 100 K and the Reynolds number therefore can be raised accordingly. The maximum Reynolds number for 2D profile tests can reach 27x10^6. In this paper the test uncertainty and the flow quality of DNW-KKK were analyzed. Then some test results on the Reynolds number effect of the wind turbine profiles will be presented. The Reynolds number effect is different from model to model. Especially for thick profiles and flow control devices the Reynolds number effect is not always like the description in literature. 展开更多
关键词 Aerodynamics of wind turbine profiles Reynolds number effect cryogenic wind tunnel test.
下载PDF
Wind tunnel testing of wind pressures on a large gymnasium roof
19
作者 傅继阳 吴玖荣 梁枢果 《Journal of Central South University》 SCIE EI CAS 2011年第2期521-529,共9页
A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention ... A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention is paid to the charaeteristics of fluctuating wind pressures in different zones on the roof. Some selected results are presented: 1) correlations between fluctuating wind pressures on both roof surfaces, 2) eigenvalues and eigenvectors of covariance matrices of the fluctuating wind pressures, 3) probability distributions of the fluctuating wind pressures, and 4) statistical characteristics of peak factor. Furthermore, the applicability of the quasi-steady approach is discussed in detail. Based on the results, an empirical formula for estimating the minimum pressure coefficients, using a peak factor approach, is presented. Comparison of the minimum pressure coefficients determined by the proposed formula and those obtained from the wind tunnel tests is made to examine the applicability and accuracy of the proposed formula. 展开更多
关键词 long-span roof wind pressure wind tunnel test gymnasium roof
下载PDF
Determination of Wind Pressure Coefficients for Arc-Shaped Canopy Roof with Numerical Wind Tunnel Method
20
作者 尹越 张天舒 +1 位作者 韩庆华 杨惠东 《Transactions of Tianjin University》 EI CAS 2009年第5期360-365,共6页
In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow aroun... In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof. 展开更多
关键词 arc-shaped canopy roof numerical wind tunnel method wind pressure coefficient wind tunnel test skylights
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部