Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to...Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to be constant or parameterized by linear regression and other methods in existing studies,which may limit the accuracy of the oil spill simulation.A parameterization method for wind drift factor(PMOWDF)based on deep learning,which can effectively extract the time-varying characteristics on a regional scale,is proposed in this paper.The method was adopted to forecast the oil spill in the East China Sea.The discrepancies between predicted positions and actual measurement locations of the drifters are obtained using seasonal statistical analysis.Results reveal that PMOWDF can improve the accuracy of oil spill simulation compared with the traditional method.Furthermore,the parameteriza-tion method is validated with satellite observations of the Sanchi oil spill in 2018.展开更多
In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In a...In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.展开更多
Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equat...Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.展开更多
To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and h...To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and harmonic superposition method. The computational fluid dynamics method is used to obtain the aerodynamic load coefficients at different mean yaw angles, and the aero- dynamic admittance function is introduced to calculate unsteady aerodynamic loads of high-speed trains in fluctuating winds. Using this method, the standard deviation and maximum value of the aerodynamic force (moment) are simulated. The results show that when the train speed is fixed, the varying mean wind speeds have large impact on the fluctuating value of the wind speeds and aerodynamic loads; in contrast, when the wind speed is fixed, the varying train speeds have little impact on the fluctuating value of the wind speeds or aerodynamic loads. The ratio of standard deviation to 0.SpKU2, or maximum value to 0.5pKU2, can be expressed as the function of mean yaw angle. The peak factors of the side force and roll moment are the same ( - 3.28), the peak factor of the lift force is - 3.33, and the peak factors of the yaw moment and pitch moment are also the same (- 3.77).展开更多
The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically...The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.展开更多
Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind ...Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.展开更多
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
基金funded by the Social Science Foundation of Shandong(No.20CXWJ08).
文摘Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to be constant or parameterized by linear regression and other methods in existing studies,which may limit the accuracy of the oil spill simulation.A parameterization method for wind drift factor(PMOWDF)based on deep learning,which can effectively extract the time-varying characteristics on a regional scale,is proposed in this paper.The method was adopted to forecast the oil spill in the East China Sea.The discrepancies between predicted positions and actual measurement locations of the drifters are obtained using seasonal statistical analysis.Results reveal that PMOWDF can improve the accuracy of oil spill simulation compared with the traditional method.Furthermore,the parameteriza-tion method is validated with satellite observations of the Sanchi oil spill in 2018.
基金Supported by National Natural Science Foundation of China(40901136)~~
文摘In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010(No.STSN-04-01)
文摘Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.
基金supported by the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities,the National Key Technology R&D Program of China (2009BAG12A01-C09)the High-Speed Railway Basic Research Fund Key Project (U1234208)
文摘To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and harmonic superposition method. The computational fluid dynamics method is used to obtain the aerodynamic load coefficients at different mean yaw angles, and the aero- dynamic admittance function is introduced to calculate unsteady aerodynamic loads of high-speed trains in fluctuating winds. Using this method, the standard deviation and maximum value of the aerodynamic force (moment) are simulated. The results show that when the train speed is fixed, the varying mean wind speeds have large impact on the fluctuating value of the wind speeds and aerodynamic loads; in contrast, when the wind speed is fixed, the varying train speeds have little impact on the fluctuating value of the wind speeds or aerodynamic loads. The ratio of standard deviation to 0.SpKU2, or maximum value to 0.5pKU2, can be expressed as the function of mean yaw angle. The peak factors of the side force and roll moment are the same ( - 3.28), the peak factor of the lift force is - 3.33, and the peak factors of the yaw moment and pitch moment are also the same (- 3.77).
文摘The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.
基金supported by the National Natural Science Foundation of China(Grant No.41330746)
文摘Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.