Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss ca...Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss calculation method of MCR different from that of power transformer,but also make it more difficult to calculate the core loss and wingding loss of MCR accurately.Our study combines core partition method with dynamic inverse J-A model to calculate the core loss of MCR.The winding loss coefficient of MCR is proposed,which takes into account the influence of harmonics and magnetic flux leakage on the winding loss of MCR.The result shows that the proposed core loss calculation method and winding loss coefficient are effective and correct for the loss calculation of MCR.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)。
文摘Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss calculation method of MCR different from that of power transformer,but also make it more difficult to calculate the core loss and wingding loss of MCR accurately.Our study combines core partition method with dynamic inverse J-A model to calculate the core loss of MCR.The winding loss coefficient of MCR is proposed,which takes into account the influence of harmonics and magnetic flux leakage on the winding loss of MCR.The result shows that the proposed core loss calculation method and winding loss coefficient are effective and correct for the loss calculation of MCR.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.