The unsteady evolution of trailing vortex sheets behind a wing in ground effect is simulated using an unsteady discrete vortex panel method. The ground effect is included by image method. The present method is validat...The unsteady evolution of trailing vortex sheets behind a wing in ground effect is simulated using an unsteady discrete vortex panel method. The ground effect is included by image method. The present method is validated by comparing the simulated wake roll-up shapes to published numerical results. When a wing is flying in a very close proximity to the ground, the optimal wing loading is parabolic rather than elliptic. Thus, a theoretical model of wing load distributions is suggested, and unsteady vortex evolutions behind lifting lines with both elliptic and parabolic load distributions are simulated for several ground heights. For a lifting line with elliptic and parabolic loading, the ground has the effect of moving the wingtip vortices laterally outward and suppressing the development of the vortex. When the wing is in a very close proximity to the ground, the types of wing load distributions does not affect much on the overall wake shapes, but parabolic load distributions make the wingtip vortices move more laterally outward than the elliptic load distributions.展开更多
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
A new analytical approach, based on a lifting surface model and a full span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the...A new analytical approach, based on a lifting surface model and a full span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade tip and is emphasized to be applicable to various blade tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.展开更多
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was c...The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.展开更多
文摘The unsteady evolution of trailing vortex sheets behind a wing in ground effect is simulated using an unsteady discrete vortex panel method. The ground effect is included by image method. The present method is validated by comparing the simulated wake roll-up shapes to published numerical results. When a wing is flying in a very close proximity to the ground, the optimal wing loading is parabolic rather than elliptic. Thus, a theoretical model of wing load distributions is suggested, and unsteady vortex evolutions behind lifting lines with both elliptic and parabolic load distributions are simulated for several ground heights. For a lifting line with elliptic and parabolic loading, the ground has the effect of moving the wingtip vortices laterally outward and suppressing the development of the vortex. When the wing is in a very close proximity to the ground, the types of wing load distributions does not affect much on the overall wake shapes, but parabolic load distributions make the wingtip vortices move more laterally outward than the elliptic load distributions.
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
文摘A new analytical approach, based on a lifting surface model and a full span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade tip and is emphasized to be applicable to various blade tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.
文摘The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.