期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison on Winter Wheat Yield Estimating Models Based on Radarsat-2 and HJ Satellite in Huaihe River Region 被引量:1
1
作者 范伟 陈磊 +2 位作者 陈娟 闫洪凯 刘韬 《Agricultural Science & Technology》 CAS 2016年第4期1019-1023,共5页
The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model... The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model. 展开更多
关键词 Winter wheat yield estimating model Synthetic aperture radar RADARSAT-2 HJ satellite model comparison
下载PDF
A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain 被引量:2
2
作者 ZHOU Li-li LIAO Shu-hua +8 位作者 WANG Zhi-min WANG Pu ZHANG Ying-hua YAN Hai-jun GAO Zhen SHEN Si LIANG Xiao-gui WANG Jia-hui ZHOU Shun-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第5期1181-1193,共13页
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irr... To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area. 展开更多
关键词 crop simulation modeling deficit irrigation precipitation level CERES-Wheat model winter wheat North China Plain
下载PDF
Definition of water exchange zone between the Bohai Sea and Yellow Sea and the effect of winter gale on it 被引量:2
3
作者 SONG Jun GUO Junru +5 位作者 LI Jing MU Lin LIU Yulong WANG Guosong LI Yan LI Huan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第1期17-25,共9页
The marine dynamic environment of the Bohai Sea and the Yellow Sea in the winter of 2006 is simulated by the Regional Ocean Modelling System(ROMS) marine numerical model. Using the simulated temperature and salinity... The marine dynamic environment of the Bohai Sea and the Yellow Sea in the winter of 2006 is simulated by the Regional Ocean Modelling System(ROMS) marine numerical model. Using the simulated temperature and salinity, the water exchange zone between the Bohai Sea and Yellow Sea is defined through the Spectral Mixture Model(SMM). The influence of winter gales on the water exchange is also discussed. It is found that the Yellow Sea water masses in winter are distributed in a "tongue" shape in the Bohai Strait region, the water exchange zone presents a zonal distribution along the margin of the "tongue", with a tendency of running from northwest to southeast, and the water exchange is intensified at the tip of the "tongue". Besides, the coastal area in the northernmost Yellow Sea does not participate in the water exchange between the Bohai Sea and Yellow Sea. The result shows that the winter gale events play a role in enhancing the water exchange. It is specifically shown by the facts: the Yellow Sea warm current is enhanced to intrude the Bohai Sea by the gale process; the water exchange zone extends into the Bohai Sea; the water exchange belt in the southern part becomes wider; the mixture zone of river runoff with the Bohai Sea water upon its entry is enlarged and shifts northwards. Within two days after the gale process, the exchange zone retreats toward the Yellow Sea and the exchange zone resulted from the Huanghe River(Yellow River) runoff also shrinks back shoreward. 展开更多
关键词 Bohai Strait winter gale spectral clustering Spectral Mixture model water mass analysis water exchange
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部