针对低信噪比条件下正交频分复用(orthogonal frequency division multiplexing,OFDM)系统利用MUSIC算法(multiple signal classification)进行时延估计时,特征值分解得到的信号子空间和噪声子空间不能完全正交导致算法性能下降的问题,...针对低信噪比条件下正交频分复用(orthogonal frequency division multiplexing,OFDM)系统利用MUSIC算法(multiple signal classification)进行时延估计时,特征值分解得到的信号子空间和噪声子空间不能完全正交导致算法性能下降的问题,提出一种基于子空间加权的时延估计算法——WMUSIC算法(weighted multiple signal classification)。算法对信道频域响应估计的协方差矩阵进行特征分解,利用噪声特征值的幂级数对噪声子空间进行加权处理,同时采用信号特征值的倒数对信号子空间进行加权处理,以修正MUSIC算法的伪谱,通过谱峰搜索得到时延估计值。仿真结果表明,与MUSIC算法相比,WMUSIC算法具有更高的时延估计精度,在信噪比为-8 dB时,估计精度在两径条件下提升71.46%,三径条件下提升19.48%。WMUSIC算法有效解决了低信噪比条件下MUSIC算法伪谱谱峰存在混叠导致谱峰搜索误差较大的问题,可以完成较为准确的时延估计任务,提高了低信噪比条件下OFDM系统的时延估计性能。展开更多
文摘针对低信噪比条件下正交频分复用(orthogonal frequency division multiplexing,OFDM)系统利用MUSIC算法(multiple signal classification)进行时延估计时,特征值分解得到的信号子空间和噪声子空间不能完全正交导致算法性能下降的问题,提出一种基于子空间加权的时延估计算法——WMUSIC算法(weighted multiple signal classification)。算法对信道频域响应估计的协方差矩阵进行特征分解,利用噪声特征值的幂级数对噪声子空间进行加权处理,同时采用信号特征值的倒数对信号子空间进行加权处理,以修正MUSIC算法的伪谱,通过谱峰搜索得到时延估计值。仿真结果表明,与MUSIC算法相比,WMUSIC算法具有更高的时延估计精度,在信噪比为-8 dB时,估计精度在两径条件下提升71.46%,三径条件下提升19.48%。WMUSIC算法有效解决了低信噪比条件下MUSIC算法伪谱谱峰存在混叠导致谱峰搜索误差较大的问题,可以完成较为准确的时延估计任务,提高了低信噪比条件下OFDM系统的时延估计性能。