This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is propo...This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is proposed to enhance the impedance bandwidth and reduce the antenna size. The proposed antenna is comprised of two patches surrounded by the ground structure. Two metal patches of the antenna are located on two opposite sides of the dielectric substrate. The feed patch is used to excite the radiation patch. This unique design is realized by properly choosing the suitable feed patch shape, selecting similar slot shape on the radiation patch, and tuning their dimensions. The proposed antenna with an extremely small size of 6 mm × 9 mm has an operating impedance bandwidth ranging from 4.5 to 6.1 GHz for S<sub>11</sub> < -10 dB, which also covers the two IEEE 802.11a wireless local area network bands (5.15 - 5.35 GHz and 5.725 - 5.825 GHz). In addition to be very small in size, the antenna exhibits omni-directional radiation patterns in the entire operating bandwidth and low cross polarization. The distortionless time domain performance of the antenna is confirmed by investigation of the phase response and group delay. The obtained results in both frequency and time domain show that the proposed antenna is suitable for use in wireless communication systems.展开更多
IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this...IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional min-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with min-hops scheme,with the success transfer rate increased by at least 20% and transfer time improved as high as 34%.展开更多
This work presents a new bendable antenna for worldwide interoperability for microwave access (WiMAX) wireless communication systems. These antennas, transparent and flexible, will be easily integrated into various md...This work presents a new bendable antenna for worldwide interoperability for microwave access (WiMAX) wireless communication systems. These antennas, transparent and flexible, will be easily integrated into various mdia and in particular OLED lighting which could be part of the public lighting network of tomorrow as well as on all display media. The integration of these antennas as close as possible to the end-user is a possible solution to reduce the energy consumption which goes hand in hand with the increase in the data rate. This kind of new antenna, designed to be integrated in organic light-emitting diode (OLED), was modeled from a transparent VeilShieldTM conductive fabric and was placed on a 100% polyester substrate with a thickness of 1.5 mm and a loss tangent of 0.02. We have tested and evaluated the characteristic parameters of our antenna, namely the reflection coefficient, the radiation pattern and the gain, to find out the performance of our proposed design. The performance of the transparent conductive fabric integrated in the 100% polyester substrate is tested for the application of flexible antenna operating at 3.5 GHz with a gain value of 5.38 dB. We have integrated this proposed new antenna with the OLED light source containing four layers of different materials and electrical properties: aluminum cathode layer, polymer layer, indium tin oxide (ITO) anode layer and glass substrate layer. After integration, the resonant frequency shifted to 3.52 GHz with a gain value of 4.61 dB. In addition, we also tested the concave bending on the reflection coefficient of the proposed flexible antenna taking into account the different bending angles. This work demonstrates the possibility of integrating these unconventional materials used for the proposed antenna within the OLED despite weak effects on the resonant frequency and the gain of the proposed antenna after integration.展开更多
This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in ...This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in WLAN access points by re-designing the Distribution_Service component of the MAC state machine is proposed. A variable named dotl 1 Isolation is defined to determine whether the MAC level communication between wireless stations in the same BSS is permitted or not. Finally, a design solution based on MPC860 hardware and embedded Linux software for PWLAN access point is specified. The simulation results of MAC isolation for PWLAN show that the proposed scheme is feasible and effective.展开更多
Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Impe...Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span>展开更多
This paper studied the application of minimum description length (MDL) criterion for estimating root-mean-squared (RMS) delay spread (RDS) for MIMO OFDM systems. The analytic relationship between the powers and the co...This paper studied the application of minimum description length (MDL) criterion for estimating root-mean-squared (RMS) delay spread (RDS) for MIMO OFDM systems. The analytic relationship between the powers and the correlation matrix of multipath components established the feasibility of the application of the MDL criterion to RDS estimation. The estimator presented both the estimate of instantaneous RDS and the estimates of noise variance, channel power and SNR of current channel with low computational complexity. Given the powers of the estimated multipath components, the MDL criterion was adopted to acquire the number of paths and the time delays of each path of current channel without making eigendecomposition of the correlation matrix normally required by MDL criterion, following which the noise variance and the power of each path can be estimated. The power delay profile (PDP) and RDS of the current channel were achieved. Simulation results showed that the proposed estimator was insensitive to variance of SNR and robust against frequency-selectivity.展开更多
Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researche...Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researchers because of its flexibility and robustness. However, designing efficient WNCS over Mobile Ad Hoc Networks (MANET) is still a challenging topic because of its less-predictable aspects, such as inconsistent delay, packet drop probability, and dynamic topology. This paper presents design guidelines for WNCS over MANET using the Network Simulator version 2, NS2 software. It investigates the impact of packet delay and packet drop under the AODV and DSR routing protocols. The simulation results have been compared to MATLAB results for validation. Keywords Adhoc On-Demand Distance Vector (AODV) routing - Dynamic Source routing (DSR) - Mobile Adhoc Networks (MANET) - Wireless Networked Control Systems (WNCS) Mohammad Shahidul Hasan received his BSc and first MSc in Computer Science from the University of Dhaka, Bangladesh. He obtained his 2nd MSc in Computer & Network Engineering from Sheffield Hallam University, Sheffield, UK. Currently he is pursuing his PhD under the Faculty of Computing, Engineering and Technology, Staffordshire University, Stafford, UK in Networked Control Systems over MANET.Chris Harding received his BSc in Computing Science and Masters by Research from Staffordshire University, UK. Currently he is pursuing his PhD in Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.Hongnian Yu is Professor of Computer Science at Staffordshire University. He was a lecturer in Control and Systems Engineering at Yanshan University, China in 1985–1990, did his PhD in Robotics at King’s College London (1990–1994), was a research fellow in Manufacturing Systems at Sussex University (1994–1996), a lecturer in Artificial Intelligence at Liver-pool John Moore’s University (1996–1999), a lecturer in Control and Systems Engineering at the University of Exeter (1999–2002), and a Senior Lecturer in Computing at the University of Bradford (2002–2004). He now leads the Mobile Computing and Distributed Systems Research Group at Staffordshire University. He was a founding member of the Modeling Optimisation Scheduling and Intelligent Control research group at the University of Bradford. He has extensive research experience in neural networks, mobile computing, modeling, control of robot manipulators, and modeling, scheduling, planning, and simulations of large discrete event dynamic systems with applications to manufacturing systems, supply chains, transportation networks, and computer networks. He has published over 100 research papers focusing on the following: neural networks, computer networks, adaptive and robust control of robot manipulators, analysis and control of hybrid machines, control of timed delay systems, predictive control, manufacturing system modeling and scheduling, planning, and supply chains. He has held several research grants from EPSRC, the Royal Society, and the EU, as well as from industry. He was awarded the F.C. William Premium for his paper on adaptive and robust control of robot manipulators by the IEE Council in 1997. Professor Yu is an EPSRC college member, a member of IEEE, and a committee member of several conferences and journal editorial boards.Alison Griffiths has been a Senior Lecturer in Telecommunications at Staffordshire University since 2003. She was a lecturer in Computing at Staffordshire University in 2002–2003. She was a Research Associate on an EPSRC funded project whilst doing her PhD on the convergence of Mobile Computing and Telecommunications at Staffordshire University (1999–2003). The investigation consisted of the communication of different types of media (voice, video conferencing, web browsing, and downloading) over a common network, using a mobile device. Problems considered were the complications that occurred when a user moves, and consequently changes their end-point in the network during communication, with respect to the type of service the user is provided with (delays and losses). She obtained both her MEng and 1st Class BEng (Hons) from Staffordshire University in 1999 and 1998 respectively. She is now part of the Mobile Computing and Distributed Systems Research Group at Staffordshire University. She has published 8 research papers focusing on quality of service and access between cellular and IP packet switched networks. Future directions include mobile agents and control of mobile wireless ad-hoc networks. Her current research interests have extended to Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.展开更多
In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represe...In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless p...From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless power transmission with wireless communications to allow the truly practical implementation of the Internet of Things as well as many other applications.In this paper,technical backgrounds,problem formation,state-of-the-art solutions,circuit implementation examples,and system integrations of SWIPT are presented.展开更多
The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
Invisible orthodontic treatment is an effective form of malocclusion treatment favored in recent years.The magnitude of its orthodontic force has a crucial impact on the outcome of the treatment and has gained a high ...Invisible orthodontic treatment is an effective form of malocclusion treatment favored in recent years.The magnitude of its orthodontic force has a crucial impact on the outcome of the treatment and has gained a high level of clinical interest.However,there are very few explorations of in vivo measurements of orthodontic force,and existing studies are limited to a large number of couplings,which are inconvenient for clinical use.In this work,we developed a wireless flexible measurement system that allows quantitative measurement of the orthodontic force of an invisible aligner on a dental model.The system is wireless,tiny,flexible,fast responding,and has a range suitable for the range of orthodontic forces.We show the difference in the orthodontic force applied to different tooth positions and the difference in the orthodontic force applied to different positions of the same tooth.In addition,the system can evaluate the mechanical differences between aligners of different brands and materials as well as the deviation of fabrication results.This system provides a test tool and evaluation method for future real-time assessment of clinical orthodontic forces.展开更多
Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by ap...Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.展开更多
Massive multiple-input multiple-output(MIMO) requires a large number(tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral effi...Massive multiple-input multiple-output(MIMO) requires a large number(tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency(RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals(MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.展开更多
The control and scheduling for wireless networked control system with packet dropout and disturbance are investigated.A prediction based event triggered control is proposed to reduce data transmissions while preservin...The control and scheduling for wireless networked control system with packet dropout and disturbance are investigated.A prediction based event triggered control is proposed to reduce data transmissions while preserving the robustness against external disturbance.First,a trigger threshold is especially designed to maintain the difference of the estimated and actual states below a proper boundary when system suffers from packet dropout.Then a predictive controller is designed to compensate for packet dropouts by utilizing the packet-based control approach.The sufficient conditions to ensure the closed-loop system being uniformly ultimately bounded are derived,with consequently the controller gain method.Numerical examples illustrate the effectiveness of the proposed approach.展开更多
The concept of virtualization of wireless communication systems is based on the open and scalable hardware platform of software radios in the personal communication network. The base station is divided into four compo...The concept of virtualization of wireless communication systems is based on the open and scalable hardware platform of software radios in the personal communication network. The base station is divided into four components according to their functions: antenna, IF, baseband, and control, which are connected by the ATM network. Virtualization provides great benefits such as fast handoff and easy realization of different macrodiversity algorithms. Macrodiversity can not be easily realized in conventional cellular systems. An exact analysis is presented for the performance of maximal ratio combining (MRC) macrodiversity in virtualized wireless communication systems. The results show that compared with soft handoff in CDMA systems, MRC can greatly increase the reverse link capacity.展开更多
In this paper,we propose a novel polling algorithm to decrease the number of idle slots and collission slots during the polling cycle by evaluating the bandwidth request of the subscribe stations(SSs) in the next poll...In this paper,we propose a novel polling algorithm to decrease the number of idle slots and collission slots during the polling cycle by evaluating the bandwidth request of the subscribe stations(SSs) in the next polling cycle for broadband wireless access(BWA) systems.We firstly analyze the feature of silent time intervals and deduce the Hurst index which symbolizes the degree of self-similarity and long-relative nature.Then we represent the inactive OFF time intervals by the Pareto model and estimate the shape parameterαby the group measured data.Finally we can evaluate the transmission probability of a silent SS before the next polling cycle. By this algorithm,we can find the optimal transmission opportunities for the base station(BS) to achieve the least collision or void timeslots in order to achieve the largest bandwidth efficiency.The theoretical analysis and simulation results show that this polling algorithm can improve the performance for BWA system.展开更多
A novel communication technique is proposed, which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. Then the capacity is increased by exploiting the opt...A novel communication technique is proposed, which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. Then the capacity is increased by exploiting the optical spatial bandwidth resources. At last, we experimentally demonstrate the proposed communication technique based on four 8 × 8 spatial pattern signals by using lenslet array processor.展开更多
A wireless terahertz (THz) communication link is demonstrated, in which a THz quantum cascade laser and a THz quantum-well photo-detector (QWP) serve as the emitter and receiver, respectively. With the help of the...A wireless terahertz (THz) communication link is demonstrated, in which a THz quantum cascade laser and a THz quantum-well photo-detector (QWP) serve as the emitter and receiver, respectively. With the help of the well-matched THz QWP, the optical collection efficiency has greatly been improved. A data signal transmitted over 2.2 m with a low bit error rate (≤1 × 10^-8) and data rate as high as 20 Mbps is achieved, which are almost 1 order of magnitude higher than that previously reported.展开更多
A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian d...A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.展开更多
文摘This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is proposed to enhance the impedance bandwidth and reduce the antenna size. The proposed antenna is comprised of two patches surrounded by the ground structure. Two metal patches of the antenna are located on two opposite sides of the dielectric substrate. The feed patch is used to excite the radiation patch. This unique design is realized by properly choosing the suitable feed patch shape, selecting similar slot shape on the radiation patch, and tuning their dimensions. The proposed antenna with an extremely small size of 6 mm × 9 mm has an operating impedance bandwidth ranging from 4.5 to 6.1 GHz for S<sub>11</sub> < -10 dB, which also covers the two IEEE 802.11a wireless local area network bands (5.15 - 5.35 GHz and 5.725 - 5.825 GHz). In addition to be very small in size, the antenna exhibits omni-directional radiation patterns in the entire operating bandwidth and low cross polarization. The distortionless time domain performance of the antenna is confirmed by investigation of the phase response and group delay. The obtained results in both frequency and time domain show that the proposed antenna is suitable for use in wireless communication systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60672124 and 60832009)Hi-Tech Research and Development Program(National 863 Program)(Grant No.2007AA01Z221)
文摘IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional min-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with min-hops scheme,with the success transfer rate increased by at least 20% and transfer time improved as high as 34%.
文摘This work presents a new bendable antenna for worldwide interoperability for microwave access (WiMAX) wireless communication systems. These antennas, transparent and flexible, will be easily integrated into various mdia and in particular OLED lighting which could be part of the public lighting network of tomorrow as well as on all display media. The integration of these antennas as close as possible to the end-user is a possible solution to reduce the energy consumption which goes hand in hand with the increase in the data rate. This kind of new antenna, designed to be integrated in organic light-emitting diode (OLED), was modeled from a transparent VeilShieldTM conductive fabric and was placed on a 100% polyester substrate with a thickness of 1.5 mm and a loss tangent of 0.02. We have tested and evaluated the characteristic parameters of our antenna, namely the reflection coefficient, the radiation pattern and the gain, to find out the performance of our proposed design. The performance of the transparent conductive fabric integrated in the 100% polyester substrate is tested for the application of flexible antenna operating at 3.5 GHz with a gain value of 5.38 dB. We have integrated this proposed new antenna with the OLED light source containing four layers of different materials and electrical properties: aluminum cathode layer, polymer layer, indium tin oxide (ITO) anode layer and glass substrate layer. After integration, the resonant frequency shifted to 3.52 GHz with a gain value of 4.61 dB. In addition, we also tested the concave bending on the reflection coefficient of the proposed flexible antenna taking into account the different bending angles. This work demonstrates the possibility of integrating these unconventional materials used for the proposed antenna within the OLED despite weak effects on the resonant frequency and the gain of the proposed antenna after integration.
文摘This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in WLAN access points by re-designing the Distribution_Service component of the MAC state machine is proposed. A variable named dotl 1 Isolation is defined to determine whether the MAC level communication between wireless stations in the same BSS is permitted or not. Finally, a design solution based on MPC860 hardware and embedded Linux software for PWLAN access point is specified. The simulation results of MAC isolation for PWLAN show that the proposed scheme is feasible and effective.
文摘Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span>
文摘This paper studied the application of minimum description length (MDL) criterion for estimating root-mean-squared (RMS) delay spread (RDS) for MIMO OFDM systems. The analytic relationship between the powers and the correlation matrix of multipath components established the feasibility of the application of the MDL criterion to RDS estimation. The estimator presented both the estimate of instantaneous RDS and the estimates of noise variance, channel power and SNR of current channel with low computational complexity. Given the powers of the estimated multipath components, the MDL criterion was adopted to acquire the number of paths and the time delays of each path of current channel without making eigendecomposition of the correlation matrix normally required by MDL criterion, following which the noise variance and the power of each path can be estimated. The power delay profile (PDP) and RDS of the current channel were achieved. Simulation results showed that the proposed estimator was insensitive to variance of SNR and robust against frequency-selectivity.
文摘Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researchers because of its flexibility and robustness. However, designing efficient WNCS over Mobile Ad Hoc Networks (MANET) is still a challenging topic because of its less-predictable aspects, such as inconsistent delay, packet drop probability, and dynamic topology. This paper presents design guidelines for WNCS over MANET using the Network Simulator version 2, NS2 software. It investigates the impact of packet delay and packet drop under the AODV and DSR routing protocols. The simulation results have been compared to MATLAB results for validation. Keywords Adhoc On-Demand Distance Vector (AODV) routing - Dynamic Source routing (DSR) - Mobile Adhoc Networks (MANET) - Wireless Networked Control Systems (WNCS) Mohammad Shahidul Hasan received his BSc and first MSc in Computer Science from the University of Dhaka, Bangladesh. He obtained his 2nd MSc in Computer & Network Engineering from Sheffield Hallam University, Sheffield, UK. Currently he is pursuing his PhD under the Faculty of Computing, Engineering and Technology, Staffordshire University, Stafford, UK in Networked Control Systems over MANET.Chris Harding received his BSc in Computing Science and Masters by Research from Staffordshire University, UK. Currently he is pursuing his PhD in Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.Hongnian Yu is Professor of Computer Science at Staffordshire University. He was a lecturer in Control and Systems Engineering at Yanshan University, China in 1985–1990, did his PhD in Robotics at King’s College London (1990–1994), was a research fellow in Manufacturing Systems at Sussex University (1994–1996), a lecturer in Artificial Intelligence at Liver-pool John Moore’s University (1996–1999), a lecturer in Control and Systems Engineering at the University of Exeter (1999–2002), and a Senior Lecturer in Computing at the University of Bradford (2002–2004). He now leads the Mobile Computing and Distributed Systems Research Group at Staffordshire University. He was a founding member of the Modeling Optimisation Scheduling and Intelligent Control research group at the University of Bradford. He has extensive research experience in neural networks, mobile computing, modeling, control of robot manipulators, and modeling, scheduling, planning, and simulations of large discrete event dynamic systems with applications to manufacturing systems, supply chains, transportation networks, and computer networks. He has published over 100 research papers focusing on the following: neural networks, computer networks, adaptive and robust control of robot manipulators, analysis and control of hybrid machines, control of timed delay systems, predictive control, manufacturing system modeling and scheduling, planning, and supply chains. He has held several research grants from EPSRC, the Royal Society, and the EU, as well as from industry. He was awarded the F.C. William Premium for his paper on adaptive and robust control of robot manipulators by the IEE Council in 1997. Professor Yu is an EPSRC college member, a member of IEEE, and a committee member of several conferences and journal editorial boards.Alison Griffiths has been a Senior Lecturer in Telecommunications at Staffordshire University since 2003. She was a lecturer in Computing at Staffordshire University in 2002–2003. She was a Research Associate on an EPSRC funded project whilst doing her PhD on the convergence of Mobile Computing and Telecommunications at Staffordshire University (1999–2003). The investigation consisted of the communication of different types of media (voice, video conferencing, web browsing, and downloading) over a common network, using a mobile device. Problems considered were the complications that occurred when a user moves, and consequently changes their end-point in the network during communication, with respect to the type of service the user is provided with (delays and losses). She obtained both her MEng and 1st Class BEng (Hons) from Staffordshire University in 1999 and 1998 respectively. She is now part of the Mobile Computing and Distributed Systems Research Group at Staffordshire University. She has published 8 research papers focusing on quality of service and access between cellular and IP packet switched networks. Future directions include mobile agents and control of mobile wireless ad-hoc networks. Her current research interests have extended to Wireless Networked Control Systems, specifically looking at NCS over MANETs, with research interests in this area concentrating on the network routing and effect of routing protocols on the NCS system.
基金supported by Science Fund for Distinguished Young Scholars of Hebei Province (No. F2011203110)Program for New Century Excellent Talents in the University of China (No. NCET-08-0658)+2 种基金National Natural Science Foundation of China (No. 60974018, No. 60934003)National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
基金FCT/MCTES through national funds and EU funds under the project UIDB/50008/2020⁃UIDP/50008/2020Lisboa 2020 Programme,Centro 2020 programme,Portugal 2020,Euro⁃pean Union,through the European Social Fund who sup⁃ported LISBOA-05-3559-FSE-000007 and CENTRO-04-3559-FSE-000094 operations as well as to Fundação para a Ciência e Tecnologia(FCT)and Agência Nacional de Inovação(ANI).
文摘From a circuit implementation perspective,this paper presents a brief overview of simultaneous wireless information and power transmission(SWIPT).By using zero-power batteryless wireless sensors,SWIPT mixes wireless power transmission with wireless communications to allow the truly practical implementation of the Internet of Things as well as many other applications.In this paper,technical backgrounds,problem formation,state-of-the-art solutions,circuit implementation examples,and system integrations of SWIPT are presented.
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
基金Beijing Natural Science Foundation(L232109)National Natural Science Foundation of China(No.12202274 and No.52171234)+1 种基金Fundamental Research Funds for the Central Universities(YWF-22-K-101)National Key Research and Development Project(Nos.2021YFC2400703 and 2019YFE0101100).
文摘Invisible orthodontic treatment is an effective form of malocclusion treatment favored in recent years.The magnitude of its orthodontic force has a crucial impact on the outcome of the treatment and has gained a high level of clinical interest.However,there are very few explorations of in vivo measurements of orthodontic force,and existing studies are limited to a large number of couplings,which are inconvenient for clinical use.In this work,we developed a wireless flexible measurement system that allows quantitative measurement of the orthodontic force of an invisible aligner on a dental model.The system is wireless,tiny,flexible,fast responding,and has a range suitable for the range of orthodontic forces.We show the difference in the orthodontic force applied to different tooth positions and the difference in the orthodontic force applied to different positions of the same tooth.In addition,the system can evaluate the mechanical differences between aligners of different brands and materials as well as the deviation of fabrication results.This system provides a test tool and evaluation method for future real-time assessment of clinical orthodontic forces.
文摘Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.
基金supported by the National Natural Science Foundation of China (61302083, 61327806)the National Science and Technology Major Project (2012ZX03004005)
文摘Massive multiple-input multiple-output(MIMO) requires a large number(tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency(RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals(MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.
基金supported in part by the National Natural Science Foundation of China under Grant No.61673350in part by the Major Projects Foundation of Zhejiang under Grant No.2017C03060。
文摘The control and scheduling for wireless networked control system with packet dropout and disturbance are investigated.A prediction based event triggered control is proposed to reduce data transmissions while preserving the robustness against external disturbance.First,a trigger threshold is especially designed to maintain the difference of the estimated and actual states below a proper boundary when system suffers from packet dropout.Then a predictive controller is designed to compensate for packet dropouts by utilizing the packet-based control approach.The sufficient conditions to ensure the closed-loop system being uniformly ultimately bounded are derived,with consequently the controller gain method.Numerical examples illustrate the effectiveness of the proposed approach.
基金the National Natural Science Foundationof China!(No.6 98310 30 )
文摘The concept of virtualization of wireless communication systems is based on the open and scalable hardware platform of software radios in the personal communication network. The base station is divided into four components according to their functions: antenna, IF, baseband, and control, which are connected by the ATM network. Virtualization provides great benefits such as fast handoff and easy realization of different macrodiversity algorithms. Macrodiversity can not be easily realized in conventional cellular systems. An exact analysis is presented for the performance of maximal ratio combining (MRC) macrodiversity in virtualized wireless communication systems. The results show that compared with soft handoff in CDMA systems, MRC can greatly increase the reverse link capacity.
基金the National Natural Science Foundation of China(No.60675024)the Natural Science Foundation of Shandong(No.Y2008G37) the Soft Science Foundation of Shandong(No.2010RKGA1033)
文摘In this paper,we propose a novel polling algorithm to decrease the number of idle slots and collission slots during the polling cycle by evaluating the bandwidth request of the subscribe stations(SSs) in the next polling cycle for broadband wireless access(BWA) systems.We firstly analyze the feature of silent time intervals and deduce the Hurst index which symbolizes the degree of self-similarity and long-relative nature.Then we represent the inactive OFF time intervals by the Pareto model and estimate the shape parameterαby the group measured data.Finally we can evaluate the transmission probability of a silent SS before the next polling cycle. By this algorithm,we can find the optimal transmission opportunities for the base station(BS) to achieve the least collision or void timeslots in order to achieve the largest bandwidth efficiency.The theoretical analysis and simulation results show that this polling algorithm can improve the performance for BWA system.
文摘A novel communication technique is proposed, which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. Then the capacity is increased by exploiting the optical spatial bandwidth resources. At last, we experimentally demonstrate the proposed communication technique based on four 8 × 8 spatial pattern signals by using lenslet array processor.
基金supported by the National"973"Program of China(No.2014CB339803)the National"863"Program of China(No.2011AA010205)+5 种基金the National Natural Science Foundation of China(Nos.61131006,61321492,61176086,61204135,61306066,61404149,61404150,and 61204135)the Major National Development Project of Scientific Instrument and Equipment(No.2011YQ150021)the National Science and Technology Major Project(No.2011ZX02707)the Major Project(No.YYYJ-1123-1)the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciencesthe Shanghai Municipal Commission of Science and Technology(Nos.13ZR1464600 and14ZR1447400)
文摘A wireless terahertz (THz) communication link is demonstrated, in which a THz quantum cascade laser and a THz quantum-well photo-detector (QWP) serve as the emitter and receiver, respectively. With the help of the well-matched THz QWP, the optical collection efficiency has greatly been improved. A data signal transmitted over 2.2 m with a low bit error rate (≤1 × 10^-8) and data rate as high as 20 Mbps is achieved, which are almost 1 order of magnitude higher than that previously reported.
文摘A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.