We propose the use of a power pulse shape of the widely known optical soliton, corresponding to the hyperbolic secant square function, for both conventional atmospheric optical communication systems and, especially, f...We propose the use of a power pulse shape of the widely known optical soliton, corresponding to the hyperbolic secant square function, for both conventional atmospheric optical communication systems and, especially, for new full-optical wireless communications. We analyze the performance of the proposed pulse in terms of peak-to-average optical power ratio (PAOPR) and bit error rate (BER). During the analysis, we compare the proposed pulse shape against conventional rectangular and Gaussian pulse shapes with reduced duty cycle. Results show the noticeable superiority of the proposed pulse for atmospheric optical links.展开更多
基金supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under Grant No.TEC2008-06598
文摘We propose the use of a power pulse shape of the widely known optical soliton, corresponding to the hyperbolic secant square function, for both conventional atmospheric optical communication systems and, especially, for new full-optical wireless communications. We analyze the performance of the proposed pulse in terms of peak-to-average optical power ratio (PAOPR) and bit error rate (BER). During the analysis, we compare the proposed pulse shape against conventional rectangular and Gaussian pulse shapes with reduced duty cycle. Results show the noticeable superiority of the proposed pulse for atmospheric optical links.