This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have...Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
Compared with wired communication,the wireless communication link is more vulnerable to be attacked or eavesdropped because of its broadcast nature.To prevent eavesdropping,many researches on transmission techniques o...Compared with wired communication,the wireless communication link is more vulnerable to be attacked or eavesdropped because of its broadcast nature.To prevent eavesdropping,many researches on transmission techniques or cryptographic methods are carried out.This paper proposes a new index parameter named as eavesdropping area,to evaluate the anti-eavesdropping performance of wireless system.Given the locations of legitimate transmitter and receiver,eavesdropping area index describes the total area of eavesdropping regions where messages can be wiretapped in the whole evaluating region.This paper gives detailed explanations about its concept and deduces mathematical formulas about performance curves based on region classification.Corresponding key system parameters are analyzed,including the characteristics of eavesdropping region,transmitted beam pattern,beam direction,receiver sensitivity,eavesdropping sensitivity,path loss exponent and so on.The proposed index can give an insight on the confirmation of high-risk eavesdropping region and formulating optimal transmitting scheme for the confidential communications to decrease the eavesdropping probability.展开更多
Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability,low latency,and massive access.Deep Learning(DL),on...Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability,low latency,and massive access.Deep Learning(DL),one of the most exciting developments in machine learning and big data,has recently shown great potential in the study of wireless communications.In this article,we provide a literature review on the applications of DL in the physical layer.First,we analyze the limitations of existing signal processing techniques in terms of model accuracy,global optimality,and computational scalability.Next,we provide a brief review of classical DL frameworks.Subsequently,we discuss recent DL-based physical layer technologies,including both DL-based signal processing modules and end-to-end systems.Deep neural networks are used to replace a single or several conventional functional modules,whereas the objective of the latter is to replace the entire transceiver structure.Lastly,we discuss the open issues and research directions of the DL-based physical layer in terms of model complexity,data quality,data representation,and algorithm reliability.展开更多
In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient ...In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.展开更多
The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicl...The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.展开更多
The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messa...The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.展开更多
In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-respo...In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.展开更多
Secret key generation(SKG)is an emerging technology to secure wireless communication from attackers.Therefore,the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wirele...Secret key generation(SKG)is an emerging technology to secure wireless communication from attackers.Therefore,the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels’uncertainty.However,the physical layer secret key generation(PHY-SKG)depends on two fundamental parameters,i.e.,coherence time and power allocation.The coherence time for PHY-SKG is not applicable to secure wireless channels.This is because coherence time is for a certain period of time.Thus,legitimate users generate the secret keys(SKs)with a shorter key length in size.Hence,an attacker can quickly get information about the SKs.Consequently,the attacker can easily get valuable information from authentic users.Therefore,we considered the scheme of power allocation to enhance the secret key generation rate(SKGR)between legitimate users.Hence,we propose an alternative method,i.e.,a power allocation,to improve the SKGR.Our results show 72%higher SKGR in bits/sec by increasing power transmission.In addition,the power transmission is based on two important parameters,i.e.,epsilon and power loss factor,as given in power transmission equations.We found out that a higher value of epsilon impacts power transmission and subsequently impacts the SKGR.The SKGR is approximately 40.7%greater at 250 from 50 mW at epsilon=1.The value of SKGR is reduced to 18.5%at 250 mW when epsilonis 0.5.Furthermore,the transmission power is also measured against the different power loss factor values,i.e.,3.5,3,and 2.5,respectively,at epsilon=0.5.Hence,it is concluded that the value of epsilon and power loss factor impacts power transmission and,consequently,impacts the SKGR.展开更多
With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireles...With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.展开更多
Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multipl...Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multiple access(MC-BDMA)to enable THz massive connections.Both the inter-beam interference and inter-band power leakage in this system are considered.A mathematical model is established to analyze and reduce their effects on the THz signal transmission.By considering the peculiarities of THz channels and characteristics of THz hardware components,we further propose a three-step hybrid precoding algorithm with low complexity,where the received signal power enhancement,the inter-beam interference elimination,and the inter-band power leakage suppression are conducted in succession.Simulation results are presented to demonstrate the high spectrum efficiency and high energy efficiency of our proposed algorithm,especially in the massive-connection scenarios.展开更多
Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower ...Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.展开更多
With Wireless communications in the 0.1-10TeraHertz(THz)band are envisioned as one of the key enablers towards ubiquitous wireless communications beyond 5G accommodating a massive number of connected devices and ultra...With Wireless communications in the 0.1-10TeraHertz(THz)band are envisioned as one of the key enablers towards ubiquitous wireless communications beyond 5G accommodating a massive number of connected devices and ultra-high user data rates in the order of Tera-bit-per-second.The THz band is located between the millimeter-wave(mmWave)and the far infrared(IR)band and still considered as one of the least investigated and exploited regions in the electromagnetic spectrum.展开更多
This paper presents the design of a fully packaged 60 GHz wideband patch antenna incorporating an air cavity and a fused silica superstrate. Circular polarization (CP) is realized by introducing a diagonal slot at the...This paper presents the design of a fully packaged 60 GHz wideband patch antenna incorporating an air cavity and a fused silica superstrate. Circular polarization (CP) is realized by introducing a diagonal slot at the center of the square patch. By optimizing the patch and the slot dimensions, a high efficiency (>90%) microstrip fed CP antenna with an impedance bandwidth of 24% and a 6 dB axial ratio bandwidth of 21.5% is designed. A coplanar waveguide (CPW) to microstrip transition with λ/4-open-ended stubs are then designed to match the antenna to the CPW packaging interface. The experimental results of the final packaged antenna agree reasonably with the simulation results, demonstrating an impedance bandwidth of more than 26% and a 6 dB axial ratio bandwidth of 22.7%.展开更多
With the explosion of wireless data rates,the terahertz(THz)band(0.1–10 THz)is envisioned as a promising candidate to break the existing bandwidth bottleneck and satisfy the ever-increasing capacity demand.The THz wi...With the explosion of wireless data rates,the terahertz(THz)band(0.1–10 THz)is envisioned as a promising candidate to break the existing bandwidth bottleneck and satisfy the ever-increasing capacity demand.The THz wireless communications feature a number of attractive properties,such as potential terabit-per-second capacity and high energy efficiency.In this paper,an overview on the state-of-the-art THz communications is studied,with a special focus on key technologies of THz transceivers and THz communication systems.The recent progress on both electronic and photonic THz transmitters are presented,and then the THz receivers operating in direct-and heterodyne reception modes are individually surveyed.Based on the THz transceiver schemes,three kinds of THz wireless communication systems are reviewed,including solid-state electronic systems,photonics-assisted systems and all-photonics systems.The prospective key enabling technologies,corresponding challenges and research directions for lighting up high-speed THz communication systems are discussed as well.展开更多
Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For examp...Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For example, many projects aiming to monitor the elderly at home include a personal area network (PAN) which can provide current location of the patient to the medical staff. This article presents an overview of the current trends in this domain. We introduce the mathematical tools used to determine position then we introduce a selection of range-free and range-based proposals. Finally, we provide a comparison of these techniques and suggest possible areas of improvement.展开更多
Linear topology is useful in several pervasive application scenarios. Even though a linear topology can be handled by unspecific routing algorithms over general purpose MAC protocols, better performance can be obtaine...Linear topology is useful in several pervasive application scenarios. Even though a linear topology can be handled by unspecific routing algorithms over general purpose MAC protocols, better performance can be obtained by specialized techniques. This paper describes a new communication scheme called Wireless Wire (WiWi), which builds up a bidirectional wireless communication channel with deterministic properties in terms of throughput and latency over a strip of pervasive devices with short-range transmission capabilities. The system is synchronous and fault tolerant. With low cost and extremely simple devices, WiWi builds up a “wire-like” dielectric link, but its applications are not limited to end-to-end communications. For example, WiWi can be used to collect data from sensors along the path, thus acting as a virtual conveyor belt.展开更多
Terahertz wireless communication has been regarded as an emerging technology to satisfy the ever-increasing demand of ultra-high-speed wireless communications.However,affected by the imperfections of cheap and energy-...Terahertz wireless communication has been regarded as an emerging technology to satisfy the ever-increasing demand of ultra-high-speed wireless communications.However,affected by the imperfections of cheap and energy-efficient Terahertz devices,Terahertz signals suffer from serve hybrid distortions,including in-phase/quadrature imbalance,phase noise and nonlinearity,which degrade the demodulation performance significantly.To improve the robustness against these hybrid distortions,an improved autoencoder is proposed,which includes coding the transmitted symbols at the transmitter and decoding the corresponding signals at the receiver.Moreover,due to the lack of information of Terahertz channel during the training of the autoencoder,a fitting network is proposed to approximate the characteristics of Terahertz channel,which provides an approximation of the gradients of loss.Simulation results show that our proposed autoencoder with fitting network can recover the transmitted symbols under serious hybrid distortions,and improves the demodulation performance significantly.展开更多
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金supported in part by the National Science Foundation(NSFC)for Distinguished Young Scholars of China with Grant 61625106the National Natural Science Foundation of China under Grant 61531011
文摘Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
文摘Compared with wired communication,the wireless communication link is more vulnerable to be attacked or eavesdropped because of its broadcast nature.To prevent eavesdropping,many researches on transmission techniques or cryptographic methods are carried out.This paper proposes a new index parameter named as eavesdropping area,to evaluate the anti-eavesdropping performance of wireless system.Given the locations of legitimate transmitter and receiver,eavesdropping area index describes the total area of eavesdropping regions where messages can be wiretapped in the whole evaluating region.This paper gives detailed explanations about its concept and deduces mathematical formulas about performance curves based on region classification.Corresponding key system parameters are analyzed,including the characteristics of eavesdropping region,transmitted beam pattern,beam direction,receiver sensitivity,eavesdropping sensitivity,path loss exponent and so on.The proposed index can give an insight on the confirmation of high-risk eavesdropping region and formulating optimal transmitting scheme for the confidential communications to decrease the eavesdropping probability.
基金supported by the National Natural Science Foundation of China under Grants 61801208,61931023,and U1936202.
文摘Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability,low latency,and massive access.Deep Learning(DL),one of the most exciting developments in machine learning and big data,has recently shown great potential in the study of wireless communications.In this article,we provide a literature review on the applications of DL in the physical layer.First,we analyze the limitations of existing signal processing techniques in terms of model accuracy,global optimality,and computational scalability.Next,we provide a brief review of classical DL frameworks.Subsequently,we discuss recent DL-based physical layer technologies,including both DL-based signal processing modules and end-to-end systems.Deep neural networks are used to replace a single or several conventional functional modules,whereas the objective of the latter is to replace the entire transceiver structure.Lastly,we discuss the open issues and research directions of the DL-based physical layer in terms of model complexity,data quality,data representation,and algorithm reliability.
基金supported in part by the National Natural Science Foundation of China under Grant 62071472in part the Program for“Industrial Io T and Emergency Collaboration”Innovative Research Team in CUMT(No.2020ZY002)。
文摘In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.
基金supported by the Major State Basic Research Development Program of China(973 Program No.2012CB316100)the National Natural Science Foundation of China(NSFC No.61032002)the Innovative Intelligence Base Project(111 Project No.111-2-14)
文摘The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.
基金supported in part by State Key Program of National Nature Science Foundation of China under Grant No.60932003National High Technical Research and Development Program of China (863 Program ) under Grant No.2007AA01Z452
文摘The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.
基金Project (No. 60372076) supported by the National Natural ScienceFoundation of China
文摘In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.
基金supported by the China National Key R&D Program(No.2018YFB0803600)Natural Science Foundation of China(No.61801008)+3 种基金Scientific Research Common Program of Beijing Municipal Education Commission(No.KM201910005025)the Chinese Postdoctoral Science Foundation(No.2020M670074)Key Project of Hunan Provincial,Department of Education(No.26420A205)The Construct Program of Applied Characteristics Discipline in Hunan University of Science and Engineering.
文摘Secret key generation(SKG)is an emerging technology to secure wireless communication from attackers.Therefore,the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels’uncertainty.However,the physical layer secret key generation(PHY-SKG)depends on two fundamental parameters,i.e.,coherence time and power allocation.The coherence time for PHY-SKG is not applicable to secure wireless channels.This is because coherence time is for a certain period of time.Thus,legitimate users generate the secret keys(SKs)with a shorter key length in size.Hence,an attacker can quickly get information about the SKs.Consequently,the attacker can easily get valuable information from authentic users.Therefore,we considered the scheme of power allocation to enhance the secret key generation rate(SKGR)between legitimate users.Hence,we propose an alternative method,i.e.,a power allocation,to improve the SKGR.Our results show 72%higher SKGR in bits/sec by increasing power transmission.In addition,the power transmission is based on two important parameters,i.e.,epsilon and power loss factor,as given in power transmission equations.We found out that a higher value of epsilon impacts power transmission and subsequently impacts the SKGR.The SKGR is approximately 40.7%greater at 250 from 50 mW at epsilon=1.The value of SKGR is reduced to 18.5%at 250 mW when epsilonis 0.5.Furthermore,the transmission power is also measured against the different power loss factor values,i.e.,3.5,3,and 2.5,respectively,at epsilon=0.5.Hence,it is concluded that the value of epsilon and power loss factor impacts power transmission and,consequently,impacts the SKGR.
基金supported by the Key Program of the National Natural Science Foundation of China(No.61631018),Key Research Program of Frontier Sciences of CAS(No.QYZDY-SSW-JSC003)Strategic Priority Research Program of CAS(No.XDA22000000).L.Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects EP/P034284/1 and EP/P003990/1(COALESCE)as well as of the European Research Council’s Advanced Fellow Grant QuantCom(Grant No.789028).
文摘With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.
基金the National Natural Science Foundation of China under Grant No.61771054.
文摘Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multiple access(MC-BDMA)to enable THz massive connections.Both the inter-beam interference and inter-band power leakage in this system are considered.A mathematical model is established to analyze and reduce their effects on the THz signal transmission.By considering the peculiarities of THz channels and characteristics of THz hardware components,we further propose a three-step hybrid precoding algorithm with low complexity,where the received signal power enhancement,the inter-beam interference elimination,and the inter-band power leakage suppression are conducted in succession.Simulation results are presented to demonstrate the high spectrum efficiency and high energy efficiency of our proposed algorithm,especially in the massive-connection scenarios.
文摘Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.
文摘With Wireless communications in the 0.1-10TeraHertz(THz)band are envisioned as one of the key enablers towards ubiquitous wireless communications beyond 5G accommodating a massive number of connected devices and ultra-high user data rates in the order of Tera-bit-per-second.The THz band is located between the millimeter-wave(mmWave)and the far infrared(IR)band and still considered as one of the least investigated and exploited regions in the electromagnetic spectrum.
文摘This paper presents the design of a fully packaged 60 GHz wideband patch antenna incorporating an air cavity and a fused silica superstrate. Circular polarization (CP) is realized by introducing a diagonal slot at the center of the square patch. By optimizing the patch and the slot dimensions, a high efficiency (>90%) microstrip fed CP antenna with an impedance bandwidth of 24% and a 6 dB axial ratio bandwidth of 21.5% is designed. A coplanar waveguide (CPW) to microstrip transition with λ/4-open-ended stubs are then designed to match the antenna to the CPW packaging interface. The experimental results of the final packaged antenna agree reasonably with the simulation results, demonstrating an impedance bandwidth of more than 26% and a 6 dB axial ratio bandwidth of 22.7%.
基金supported by the National Key Research and Development Program of China(2020YFB1805700,2018YFB1801500&2018YFB2201700)the Natural National Science Foundation of China under Grant 61771424the Natural Science Foundation of Zhejiang Province under Grant LZ18F010001 and Zhejiang Lab(no.2020LC0AD01).
文摘With the explosion of wireless data rates,the terahertz(THz)band(0.1–10 THz)is envisioned as a promising candidate to break the existing bandwidth bottleneck and satisfy the ever-increasing capacity demand.The THz wireless communications feature a number of attractive properties,such as potential terabit-per-second capacity and high energy efficiency.In this paper,an overview on the state-of-the-art THz communications is studied,with a special focus on key technologies of THz transceivers and THz communication systems.The recent progress on both electronic and photonic THz transmitters are presented,and then the THz receivers operating in direct-and heterodyne reception modes are individually surveyed.Based on the THz transceiver schemes,three kinds of THz wireless communication systems are reviewed,including solid-state electronic systems,photonics-assisted systems and all-photonics systems.The prospective key enabling technologies,corresponding challenges and research directions for lighting up high-speed THz communication systems are discussed as well.
文摘Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For example, many projects aiming to monitor the elderly at home include a personal area network (PAN) which can provide current location of the patient to the medical staff. This article presents an overview of the current trends in this domain. We introduce the mathematical tools used to determine position then we introduce a selection of range-free and range-based proposals. Finally, we provide a comparison of these techniques and suggest possible areas of improvement.
文摘Linear topology is useful in several pervasive application scenarios. Even though a linear topology can be handled by unspecific routing algorithms over general purpose MAC protocols, better performance can be obtained by specialized techniques. This paper describes a new communication scheme called Wireless Wire (WiWi), which builds up a bidirectional wireless communication channel with deterministic properties in terms of throughput and latency over a strip of pervasive devices with short-range transmission capabilities. The system is synchronous and fault tolerant. With low cost and extremely simple devices, WiWi builds up a “wire-like” dielectric link, but its applications are not limited to end-to-end communications. For example, WiWi can be used to collect data from sensors along the path, thus acting as a virtual conveyor belt.
基金supported in part by the National Natural Science Foundation of China(Grant 62101306)in part by the National Key R&D Program of China(Grant 2018YFB1801501)+2 种基金in part by Shenzhen Special Projects for the Development of Strategic Emerging Industries(201806081439290640)in part by Shenzhen Wireless over VLC Technology Engineering Lab Promotionin part by Postdoctoral Science Foundation of China(Grant 2020M670332)。
文摘Terahertz wireless communication has been regarded as an emerging technology to satisfy the ever-increasing demand of ultra-high-speed wireless communications.However,affected by the imperfections of cheap and energy-efficient Terahertz devices,Terahertz signals suffer from serve hybrid distortions,including in-phase/quadrature imbalance,phase noise and nonlinearity,which degrade the demodulation performance significantly.To improve the robustness against these hybrid distortions,an improved autoencoder is proposed,which includes coding the transmitted symbols at the transmitter and decoding the corresponding signals at the receiver.Moreover,due to the lack of information of Terahertz channel during the training of the autoencoder,a fitting network is proposed to approximate the characteristics of Terahertz channel,which provides an approximation of the gradients of loss.Simulation results show that our proposed autoencoder with fitting network can recover the transmitted symbols under serious hybrid distortions,and improves the demodulation performance significantly.