期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
1
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with PDZ-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
下载PDF
Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer 被引量:11
2
作者 Zhen Huang Fan-Ying Meng +12 位作者 Lin-Zhu Lu Qian-Qian Guo Chang-Jun Lv Nian-Hua Tan Zhe Deng Jun-Yi Chen Zi-Shu Zhang Bo Zou Hong-Ping Long Qing Zhou Sha Tian Si Mei Xue-Fei Tian 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3511-3533,共23页
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which... BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth. 展开更多
关键词 Calculus bovis M2 tumor-associated macrophage polarization Liver cancer wnt/β-catenin pathway Tumor microenvironment
下载PDF
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:9
3
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells wnt/β-catenin pathway β-catenin
下载PDF
Calculus bovis in hepatocellular carcinoma:Tumor molecular basis,Wnt/β-catenin pathway role,and protective mechanism 被引量:1
4
作者 Khaled Mohamed Mohamed Koriem 《World Journal of Gastroenterology》 SCIE CAS 2024年第35期3959-3964,共6页
In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protecti... In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protective mechanism of Calculus bovis(CB)in HCC.Liver cancer is the fourth most common cause of cancer-related deaths globally.The most prevalent kind of primary liver cancer,HCC,is typically brought on by long-term viral infections(hepatitis B and C),non-alcoholic steatohepatitis,excessive alcohol consumption,and other conditions that can cause the liver to become chronically inflamed and cirrhotic.CB is a wellknown traditional remedy in China and Japan and has been used extensively to treat a variety of diseases,such as high fever,convulsions,and stroke.Disturbances in lipid metabolism,cholesterol metabolism,bile acid metabolism,alcohol metabolism,and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis.Succinate,which is a tricarboxylic acid cycle intermediate,is vital to energy production and mitochondrial metabolism.It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies.The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development.Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway.In HCC liver carcinogenesis,Wnt/β-catenin signaling is activated by the expression of downstream target genes.Communication between the liver and the gut exists via the portal vein,biliary tract,and systemic circulation.This"gutliver axis"controls intestinal physiology.One of the main factors contributing to the development,progression,and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway.Therefore,understanding this pathway is essential to treating HCC.Eleven ingredients of CB,particularly oleanolic acid,ergosterol,and ursolic acid,have anti-primary liver cancer properties.Additionally,CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis.CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment.In the future,clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression,development,and progress. 展开更多
关键词 Hepatocellular carcinoma MICRORNAS wnt/β-catenin pathway Calculus bovis APOPTOSIS
下载PDF
Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway,and induces senescence in hepatocellular carcinoma 被引量:1
5
作者 XUEGANG YANG XIANHONG XIANG +3 位作者 GUOHUI XU SHI ZHOU TIANZHI AN ZHI HUANG 《Oncology Research》 SCIE 2024年第1期213-226,共14页
Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our... Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells. 展开更多
关键词 Peroxiredoxin 2 Hepatocellular carcinoma wnt/β-catenin pathway SENESCENCE PROLIFERATION
下载PDF
MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer
6
作者 Haowei Zhang Qixin Li +9 位作者 Xiaolong Guo Hong Wu Chenhao Hu Gaixia Liu Tianyu Yu Xiake Hu Quanpeng Qiu Gang Guo Junjun She Yinnan Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期863-877,共15页
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeu... Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O^(6)-methylguanine(O^(6)-MG)-DNA-methyltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensitivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC. 展开更多
关键词 Colorectal cancer MGMT Chemotherapy resistance Slow-cycling cells Nonhomologous end joining wnt pathway
下载PDF
Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways
7
作者 Da-zhuang Lu Li-jun Zeng +8 位作者 Yang Li Ran-li Gu Meng-long Hu Ping Zhang Peng Yu Xiao Zhang Zheng-wei Xie Hao Liu Yong-sheng Zhou 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期208-221,共14页
Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre... Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved. 展开更多
关键词 BMPs/SMAD bone loss cinobufotalin hBMMSCs OSTEOGENESIS OSTEOPOROSIS wnt/β-catenin signaling pathways
下载PDF
Harnessing the power of Calculus bovis:Anti-cancer properties and Wnt pathway modulation in hepatocellular carcinoma
8
作者 Himanshi Goyal Sachin Parwani +1 位作者 Kaneez Fatima Jyotdeep Kaur 《World Journal of Gastroenterology》 SCIE CAS 2024年第41期4496-4502,共7页
In this manuscript,we comment on the article,which explores the anti-cancer effects of Calculus bovis(CB)in tumor biology.We highlight its potential,particularly in hepatocellular carcinoma(HCC),where it inhibits the ... In this manuscript,we comment on the article,which explores the anti-cancer effects of Calculus bovis(CB)in tumor biology.We highlight its potential,particularly in hepatocellular carcinoma(HCC),where it inhibits the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathways and induces apoptosis.CB contains compounds such as oleanolic acid and ursolic acid that target interleukin-6,mitogen-activated protein kinase 8,vascular endothelial growth factor,and caspase-3,offering anti-inflammatory and hepatoprotective benefits.The manuscript also discusses CB sativus(CBS),an artificial substitute,which has shown efficacy in reducing hepatic inflammation and oxidative stress in animal models.We emphasize the need for further research on the effects of CBS on the gut-liver axis and gut microbiota,and on targeting Wnt signaling and M2 tumor-associated macrophage as potential therapeutic strategies against HCC. 展开更多
关键词 Calculus bovis Liver cancer Tumor-associated macrophages M2 polarization wnt signaling pathway
下载PDF
IL13RA2 promotes progression of infantile haemangioma by activating glycolysis and the Wnt/β-catenin signaling pathway
9
作者 ZIYONG LIU TAO MA +2 位作者 JINFANG LI WEI REN ZHIXIN ZHANG 《Oncology Research》 SCIE 2024年第9期1453-1465,共13页
Background:Interleukin 13 receptor subunit alpha 2(IL13RA2)plays an essential role in the progression of many cancers.However,the role of IL13RA2 in infantile haemangioma(IH)is still unknown.Materials and Methods:IL13... Background:Interleukin 13 receptor subunit alpha 2(IL13RA2)plays an essential role in the progression of many cancers.However,the role of IL13RA2 in infantile haemangioma(IH)is still unknown.Materials and Methods:IL13RA2 expression in IH tissues was analyzed using western blot,qRT-PCR,and immunofluorescence.The role of IL13RA2 in haemangioma-derived endothelial cells(HemECs)was determined following knockdown or overexpression of IL13RA2 using CCK-8,colony formation,apoptosis,wound healing,tubule formation,Transwell,and western blot.Results:IL13RA2 expression was upregulated in IH tissues.IL13RA2 overexpression promoted proliferation,migration,and invasion of HemECs and induced glycolysis,which was confirmed with a glycolysis inhibitor.Specifically,IL13RA2 interacted withβ-catenin and activated the Wnt/β-catenin pathway in HemECs,which were involved in the above-mentioned effects of IL13RA2.Conclusions:These findings revealed that targeting IL13RA2 is a potential therapeutic approach for IH. 展开更多
关键词 Infantile haemangioma IL13RA2 GLYCOLYSIS wnt/β-catenin pathway
下载PDF
Inhibition of M2 tumor-associated macrophages polarization by modulating the Wnt/β-catenin pathway as a possible liver cancer therapy method
10
作者 Vladislav V Tsukanov Julia L Tonkikh +1 位作者 Edward V Kasparov Alexander V Vasyutin 《World Journal of Gastroenterology》 SCIE CAS 2024年第40期4399-4403,共5页
The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of ... The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development. 展开更多
关键词 Liver cancer Treatment Calculus bovis Tumor-associated macrophages M2 tumor Macrophage polarization wnt/β-catenin pathway
下载PDF
Effects of Helicobacter pylori and Moluodan on the Wnt/β-catenin signaling pathway in mice with precancerous gastric cancer lesions
11
作者 Yi-Mei Wang Zheng-Wei Luo +5 位作者 Yu-Lin Shu Xiu Zhou Lin-Qing Wang Chun-Hong Liang Chao-Qun Wu Chang-Ping Li 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期979-990,共12页
BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and th... BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC. 展开更多
关键词 Helicobacter pylori Gastric cancer wnt/β-catenin signaling pathway Moluodan
下载PDF
Pachymic acid exerts antitumor activities by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B
12
作者 Hao Zhang Kun Zhu +5 位作者 Xue-Feng Zhang Yi-Hui Ding Bing Zhu Wen Meng Qing-Song Ding Fan Zhang 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期170-180,共11页
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor... Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B. 展开更多
关键词 Pachymic acid Lung adenocarcinoma Protein tyrosine phosphatase 1B wnt/β-catenin signaling pathway METASTASIS ANGIOGENESIS AUTOPHAGY
下载PDF
MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1
13
作者 Hur SUN MASANORI KAWANO +4 位作者 TATSUYA IWASAKI ICHRO ITONAGA YUTA KUBOTA HROSHI TSUMURA KAZUHRO TANAKA 《Oncology Research》 SCIE 2024年第3期463-476,共14页
An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(... An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1. 展开更多
关键词 MiR-329-3p TCF7L1 wnt/β-catenin pathway OSTEOSARCOMA PROLIFERATION
下载PDF
Complement factor Ⅰ knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis
14
作者 Yong-Jun Du Yue Jiang +1 位作者 Yan-Mei Hou Yong-Bo Shi 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2646-2662,共17页
BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-... BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC. 展开更多
关键词 Colon cancer Immune infiltration Complement factor I GLYCOLYSIS wnt/β-catenin/c-Myc pathway
下载PDF
Human urokinase-type plasminogen activator gene-modifiedbone marrow-derived mesenchymal stem cells attenuateliver fibrosis in rats by down-regulating the Wnt signalingpathway 被引量:35
15
作者 Zhi-Gang Ma Xiao-Dan Lv +9 位作者 Ling-Ling Zhan Lan Chen Qi-Yuan Zou Ji-Qiao Xiang Jiao-Li Qin Wei-Wei Zhang Zhao-Jing Zeng Hui Jin Hai-Xing Jiang Xiao-Ping Lv 《World Journal of Gastroenterology》 SCIE CAS 2016年第6期2092-2103,共12页
AIM: To evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells(BMSCs) with human urokinase-type plasminogen activator(u PA) on liver fibrosis, and to investigate the mechanism of gene therapy.M... AIM: To evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells(BMSCs) with human urokinase-type plasminogen activator(u PA) on liver fibrosis, and to investigate the mechanism of gene therapy.METHODS: BMSCs transfected with adenovirusmediated human urokinase plasminogen activator(Adu PA) were transplanted into rats with CCl4-induced liver fibrosis. All rats were sacrificed after 8 wk, and their serum and liver tissue were collected for biochemical, histopathologic, and molecular analyzes. The degree of liver fibrosis was assessed by hematoxylin and eosin or Masson's staining. Western blot and quantitative reverse transcription-polymerase chain reaction were used to determine protein and m RNA expression levels.RESULTS: Serum levels of alanine aminotransferase, aminotransferase, total bilirubin, hyaluronic acid, laminin, and procollagen type Ⅲ were markedly decreased, whereas the levels of serum albumin were increased by u PA gene modified BMSCs treatment. Histopathology revealed that chronic CCl4-treatment resulted in significant fibrosis while u PA gene modified BMSCs treatment significantly reversed fibrosis. By quantitatively analysing the fibrosis area of liver tissue using Masson staining in different groups of animals, we found that model animals with CCl4-induced liver fibrosis had the largest fibrotic area(16.69% ± 1.30%), while fibrotic area was significantly decreased by BMSCs treatment(12.38% ± 2.27%) and was further reduced by u PA-BMSCs treatment(8.31% ± 1.21%). Both protein and m RNA expression of β-catenin, Wnt4 and Wnt5 a was down-regulated in liver tissues following u PA gene modified BMSCs treatment when compared with the model animals.CONCLUSION: Transplantation of u PA gene modified BMSCs suppressed liver fibrosis and ameliorated liver function and may be a new approach to treating liver fibrosis. Furthermore, treatment with u PA gene modified BMSCs also resulted in a decrease in expression of molecules of the Wnt signaling pathway. 展开更多
关键词 bone marrow-derived mesenchymal STEMCELLS liver fibrosis UROKINASE PLASMINOGEN activator wnt signaling pathway
下载PDF
Developmental pathways associated with cancer metastasis:Notch,Wnt,and Hedgehog 被引量:11
16
作者 Armel Herve Nwabo Kamdje Paul Takam Kamga +8 位作者 Richard Tagne Simo Lorella Vecchio Paul Faustin Seke Etet Jean Marc Muller Giulio Bassi Erique Lukong Raghuveera Kumar Goel Jeremie Mbo Amvene Mauro Krampera 《Cancer Biology & Medicine》 SCIE CAS CSCD 2017年第2期109-120,共12页
Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death,motility, migration, and stemness. These systems are not only commonly activated in many so... Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death,motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed. 展开更多
关键词 Cancer metastasis developmental pathways NOTCH wnt HEDGEHOG therapeutic targets
下载PDF
Activation of canonical Wnt signaling pathway promotes proliferation and self-renewal of rat hepatic oval cell line WB-F344 in vitro 被引量:16
17
作者 Ying Zhang Xin-Min Li Fu-Kui Zhang Bao-En Wang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第43期6673-6680,共8页
AIM: To investigate the effect of activation of canonical Wnt signaling pathway on the proliferation and differentiation of hepatic oval cells in vitro. METHODS: WB-F344 cells were treated with recombinant Wnt3a (2... AIM: To investigate the effect of activation of canonical Wnt signaling pathway on the proliferation and differentiation of hepatic oval cells in vitro. METHODS: WB-F344 cells were treated with recombinant Wnt3a (20, 40, 80, 160, 200 ng/mL) in serum-free medium for 24 h. Cell proliferation was measured by Brdu incorporation analysis; untreated WB-F344 cells were taken as controls. After treatment with Wnt3a (160 ng/mL) for 24 h, subcellular localization and protein expression of p-catenin in WB-F344 cells treated and untreated with Wnt3a were examined by immunofluorescence staining and Western blot analysis. CyclinD1 mRNA expression was determined by semi-quantitative reverse-transcript polymerase chain reaction (RT-PCR). The mRNA levels of some phenotypic markers (AFP, CK-19, ALB) and two hepatic nuclear factors (HNF-4, HIVF-6) were measured by RT-PCR. Expressions of CK-19 and AFP protein were detected by Western blot analysis. RESULTS: Wnt3a promoted proliferation of WB-F344 cells. Stimulation of WB-F344 cells with recombinant Wnt3a resulte^l in accumulation of the transcriptional activator β-catenin, together with its translocation into the nuclei, and up-regulated typical Wnt target gene CyclinD1. After 3 d of Wnt3a treatment in the absence of serum, WB-F344 cells retained their bipotential to express several specific phenotypic markers of hepatocytes and cholangiocytes, such as AFP and CK-19, following activation of the canonical Wnt signaling pathway. CONCLUSION: The canonical Wnt signaling pathway promotes proliferation and self-renewal of rat hepatic oval cells. 展开更多
关键词 Canonical wnt signaling pathway Oval cells Cell proliferation Self-renewal of cells
下载PDF
Mutations in components of the Wnt signaling pathway in gastric cancer 被引量:11
18
作者 Kai-Feng Pan Wan-Guo Liu +2 位作者 Lian Zhang Wei-Cheng You You-Yong Lu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第10期1570-1574,共5页
AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) ... AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) exon3 mutations in 70 GCs. METHODS: The presence of mutations was identified by polymerase chain reaction (PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing. Beta-catenin expression was detected by immunohistochemical analysis. RESULTS: Among the 70 GCs, 5 (7.1%) had mutations in one or two of these three components. A frameshift mutation (1 bp deletion) in exon7 of AXIN2 was found in one case. Four cases, including the case with a mutation in AXIN2, had frameshift mutations and missense mutations in AXIN1. Five single nucleotide polymorphisms (SNPs), 334 C>T, 874 C>T, 1396 G>A, 1690 C>T and 1942 T>G, were identified in AXIN1. A frameshift mutation (27 bp deletion) spanning exon3 of CTNNB1 was observed in one case. All four cases with mutations in AXIN1 and AXIN2 showed nuclear beta- catenin expression. CONCLUSION: These data indicate that the mutationsin AXIN1 and AXIN2 may contribute to gastric carcino- genesis. 展开更多
关键词 AXIN1 AXIN2 Β-CATENIN wnt signaling pathway Gastric cancer
下载PDF
Down-regulation of mi R-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway 被引量:13
19
作者 Bo Qi Yan Wang +7 位作者 Zhi-Jun Chen Xiang-Nan Li Yu Qi Yang Yang Guang-Hui Cui Hai-Zhou Guo Wei-Hao Li Song Zhao 《World Journal of Gastroenterology》 SCIE CAS 2017年第45期7965-7977,共13页
AIM To investigate the potential role of micro RNA-30 a(mi R-30 a) in esophageal squamous cell carcinoma(ESCC).METHODS Expression of mi R-30 a-3 p/5 p was analyzed using microarray data and fresh ESCC tissue samples. ... AIM To investigate the potential role of micro RNA-30 a(mi R-30 a) in esophageal squamous cell carcinoma(ESCC).METHODS Expression of mi R-30 a-3 p/5 p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of mi R-30 a-3 p/5 p on ESCC cell proliferation. Furthermore,Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC,and then,assays were carried out to verify the potential molecular mechanism of mi R-30 a in ESCC.RESULTS Low expression of mi R-30 a-3 p/5 p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of mi R-30 a-3 p/5 p promoted ESCC cell proliferation. Increased mi R-30 a-3 p/5 p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.CONCLUSION Down-regulation of mi R-30 a-3 p/5 p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2. 展开更多
关键词 mi R-30a-3p/5p Proliferation Esophageal squamous cell carcinoma wnt signaling pathway wnt2 Fzd2
下载PDF
Research progress in the radioprotective effect of the canonical Wnt pathway 被引量:2
20
作者 Jin-Feng Wang Chao Liu +1 位作者 Qu Zhang Guan-Hong Huang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2013年第2期61-71,共11页
Irradiation from diverse sources is ubiquitous and closely associated with human activities. Radiation therapy (RT), an important component of multiple radiation origins, is a common therapeutic modality for cancer. M... Irradiation from diverse sources is ubiquitous and closely associated with human activities. Radiation therapy (RT), an important component of multiple radiation origins, is a common therapeutic modality for cancer. More importantly, RT provides significant contribution to oncotherapy by killing tumor cells. However, during the course of therapy, irradiation of normal tissues can result in a wide range of side effects, including self-limited acute toxicities, mild chronic symptoms, or severe organ dysfunction. Although numerous promising radioprotective agents have emerged, only a few have successfully entered the market because of various limitations. At present, the widely accepted hypothesis for protection against radiation-caused injury involves the Wnt canonical pathway. Activating the Wnt/β-catenin signaling pathway may protect the salivary gland, oral mucosa, and gastrointestinal epithelium from radiation damage. The underlying mechanisms include inhibiting apoptosis and preserving normal tissue functions. However, aberrant Wnt signaling underlies a wide range of pathologies in humans, and its various components contribute to cancer. Moreover, studies have suggested that Wnt/ β-catenin signaling may lead to radioresistance of cancer stem cell. These facts markedly complicate any definition of the exact function of the Wnt pathway. 展开更多
关键词 Signaling transduction canonical wnt pathway ^-catenin RADIOPROTECTION RADIATION
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部