In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, thi...It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, this method possesses global convergence and R-linear convergence for nonconvex function and convex function, respectively. Moreover, the given search direction has sufficiently descent property and belongs to a trust region without carrying out any line search rule. Numerical results show that the new method is effective.展开更多
In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best ite...In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.展开更多
An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove ...An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.展开更多
In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under...In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.展开更多
In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search directi...In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search direction to more general form, and also obtain the global convergence of corresponding algorithm. The numerical results illustrate that the new algorithm is effective.展开更多
In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the...In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.展开更多
This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming we...This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.展开更多
In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our alg...In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.展开更多
The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumptio...The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.展开更多
In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. ...In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. Under suitable conditions, the global convergence of the method is proved. Numerical results show that the presented method is practicable for the test problems.展开更多
In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding...In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding original ones and give an adequate initial step size at each iteration. It is proved that the resulting line search algorithms have global convergence under some mild conditions. It is also proved that the search direction plays an important role in line search methods and that the step size approaches mainly guarantee global convergence in general cases. The convergence rate of these methods is also investigated. Some numerical results show that these new line search algorithms are effective in practical computation.展开更多
This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines ...This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.展开更多
In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmo...In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.展开更多
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
文摘It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, this method possesses global convergence and R-linear convergence for nonconvex function and convex function, respectively. Moreover, the given search direction has sufficiently descent property and belongs to a trust region without carrying out any line search rule. Numerical results show that the new method is effective.
文摘In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.
基金This project is supported by Program of International Science and Technology Cooperation(No.2004 DFA02400).
文摘An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.
文摘In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search direction to more general form, and also obtain the global convergence of corresponding algorithm. The numerical results illustrate that the new algorithm is effective.
文摘In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.
基金National Natural Sci-ence Foundation of China(Grant No.11771056 and 11871115)the Young Elite Scientists Sponsor-ship Program by CAST(Grant No.2017QNRC001).
文摘This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.
文摘In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.
基金Sponsored by Natural Science Foundation of Beijing Municipal Commission of Education(Grant No.KM200510028019).
文摘The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.
文摘In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. Under suitable conditions, the global convergence of the method is proved. Numerical results show that the presented method is practicable for the test problems.
文摘In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding original ones and give an adequate initial step size at each iteration. It is proved that the resulting line search algorithms have global convergence under some mild conditions. It is also proved that the search direction plays an important role in line search methods and that the step size approaches mainly guarantee global convergence in general cases. The convergence rate of these methods is also investigated. Some numerical results show that these new line search algorithms are effective in practical computation.
文摘This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.
文摘In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.