期刊文献+
共找到844篇文章
< 1 2 43 >
每页显示 20 50 100
Configuring single-layer MXene nanosheet onto natural wood fiber via C-Ti-C covalent bonds for high-stability Li-S batteries
1
作者 Yangyang Chen Yu Liao +5 位作者 Ying Wu Lei Li Zhen Zhang Sha Luo Yiqiang Wu Yan Qing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期701-711,I0016,共12页
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ... Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries. 展开更多
关键词 Lithium-sulfur batteries S cathodes MXene nanosheets wood fiber C-Ti-C bonds
下载PDF
Rheological and mechanical properties of wood fiber-PP/PE blend composites 被引量:9
2
作者 高华 宋永明 +2 位作者 王清文 韩振 张明丽 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期315-318,共4页
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the inte... For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends. 展开更多
关键词 wood fiber PP/PE blends COMPOSITES rheological properties mechanical properties
下载PDF
Properties of paper mill sludge–wood fiber–HDPE composites after exposure to xenon-arc weathering 被引量:2
3
作者 Xiaohui Yang Xianquan Zhang +2 位作者 Weihong Wang Haibing Huang Shujuan Sui 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期509-515,共7页
We used paper mill sludge(PMS) to substitute for part of the wood fibers(WF) used to reinforce high density polyethylene(HDPE).The resulting composites were subjected to xenon-arc weathering.The composite filled... We used paper mill sludge(PMS) to substitute for part of the wood fibers(WF) used to reinforce high density polyethylene(HDPE).The resulting composites were subjected to xenon-arc weathering.The composite filled with limited PMS(under 10 %) had mechanical properties and aging resistance similar to those without PMS.The composites containing more PMS faded and cracked more readily than those without PMS.Based on the carbonyl index,crystallinity,and wood index,PMS appeared to accelerate the degradation of composites during weathering.Adding PMS to WF–HDPE composites reduced the weathering resistance,and this reduction was not significant if the PMS content did not exceed 20 % of the wood fibers.Therefore,PMS could be used as a reinforcement in wood-plastic composites at levels less than20 % of the wood fiber content. 展开更多
关键词 wood fiber Paper mill sludge HDPE COMPOSITES Xenon-arc weathering
下载PDF
The Accelerated Thermo-Oxidative Aging Characteristics of Wood Fiber/Polycaprolactone Composite:Effect of Temperature,Humidity and Time 被引量:1
4
作者 Shuang Si Qian Tang Xingong Li 《Journal of Renewable Materials》 SCIE EI 2021年第12期2209-2222,共14页
This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on... This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on their mechanical,chemical and morphology properties were evaluated.The composite was prepared from melted wood fibers and modified polycaprolactone by a molding process.A temperature and humidity controllable test chamber was used for the thermo-oxidative aging of the composite.The thermo-oxidative aging caused surface of the composite to be much more rougher and even a few cracks and holes appeared on it.According to the spectra of Fourier Transform Infrared(FTIR)and Gel Permeation Chromatography(GPC),C=O in the molecular chain of polycaprolactone was hydrolyzed and C–O was broken after the aging treatment,which resulted in a reduction in average molecular weight of the composite.Moreover,results showed that the mechanical strength decreased a lot with the increase in time,temperature and humidity,and the effect of temperature and humidity was more significant compared with that of time.Controlling the temperature and humidity during thermo-oxidative aging treatment could accelerate the aging of composite,which provided a quick and effective method for evaluating the aging resistance of the composite. 展开更多
关键词 wood fiber POLYCAPROLACTONE wood plastic composite thermo-oxidative aging
下载PDF
Qualitative and Quantitative Characterization of Wood Fibers of Shrubs and Tree Species of the Tamaulipan Thorn Scrub, Northeastern Mexico and Its Possible Relation to Wood Quality and Utilization 被引量:1
5
作者 Ratikanta Maiti Humberto G. Rodriguez Aruna Kumari 《American Journal of Plant Sciences》 2016年第7期1046-1057,共12页
The present study was undertaken to determine the variability in fiber cell morphology and its length among wood species of the Tamaulipan Thorn Scrub, Northeastern Mexico, used for various uses such as timber for fur... The present study was undertaken to determine the variability in fiber cell morphology and its length among wood species of the Tamaulipan Thorn Scrub, Northeastern Mexico, used for various uses such as timber for furniture, fence, post, firewood and sources of forage. The results reveal large variability in fiber cell morphology and fiber cell dimensions. The species are classified on the basis of its fiber cell morphology and fiber cell length and recommended for their possible utilization for different purposes. Wood having fibre cells with broad lumen and thin wall could be suitable for the manufacture of paper documented in the literature viz. Acacia farnesciana, Caesalpinia mexicana, Cordia boisiieri, Diospyros palmeri, Forestieria angustifolia, Morus celtifolia, Prosopis laevigata. This technique can be used in preliminary screening of woody species for its utilization for different purposes. Further studies are needed to confirm. 展开更多
关键词 wood fiber Cells Characterization VARIABILITY woody Species wood Quality Tamualipan Thorn Scrub
下载PDF
Effect of maleic anhydride grafted styrene-ethylene-butylene-styrene (MA-SEBS) on impact fracture behavior of polypropylene / wood fiber composites
6
作者 GUO Chui-gen WANG Qing-wen 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第3期203-207,共5页
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fr... MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces. 展开更多
关键词 POLYPROPYLENE wood fiber/polypropylene composites Fracture behavior Impact test
下载PDF
Study on characteristics of wood and basalt fibers and preparation of a novel ecocomposite wood fiber filtration sheet 被引量:1
7
作者 WANG Guang-jian LIU Guang-qing +4 位作者 GUO Ya-jie YANG Zheng-xin LIU Zheng-wang ZHANG Shuai XU Ming-xia 《材料科学与工程(中英文版)》 2008年第10期59-65,共7页
关键词 玄武岩纤维 纤维过滤 木材 制备 过滤性能 节约用水 硅烷偶联剂 重复利用率
下载PDF
Effect of Wood Variables on the Properties of Wood Fiber-Polypropylene Composites 被引量:1
8
作者 Kouichi SETOYAMA 《Chinese Forestry Science and Technology》 2002年第4期47-54,共8页
The effect of wood species (Chinese fir and Poplar), wood fiber content (10%, 25%, 40%) and wood fiber sizes (16 to 32 mesh, 32-65 mesh, above 65 mesh) on the properties of the wood fiber-Polypropylene composites were... The effect of wood species (Chinese fir and Poplar), wood fiber content (10%, 25%, 40%) and wood fiber sizes (16 to 32 mesh, 32-65 mesh, above 65 mesh) on the properties of the wood fiber-Polypropylene composites were studied in this paper. The results indicate that the effect of wood fiber content and size in composite were more important than that of chosen wood species. Compared with polypropylene without wood fiber, the flexural strength of the composites increased when adding wood fiber into polypr... 展开更多
关键词 wood fiber/polypropylene composite wood fiber content wood fiber size dynamic mechanical properties
原文传递
Static Bending Creep Properties of Glass Fiber Surface Composite Wood
9
作者 Shang Zhang Jie Wang +4 位作者 Benjamin Rose Yushan Yang Qingfeng Ding Bengang Zhang Chunlei Dong 《Journal of Renewable Materials》 SCIE EI 2023年第6期2881-2891,共11页
To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevic... To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevicana,P),the performance of Normal Creep(NC)and Mechanical Sorptive Creep(MSC)of GFRP and their influencing factors were tested and analyzed.The test results and analysis show that:(1)The MOE and MOR of Poplar were increased by 17.06%and 10.00%respectively by the glass fiber surface reinforced composite.(2)The surface reinforced P with glass fiber cloth only exhibits the NC pattern of wood and loses the MSC characteristics of wood,regardless of the constant or alternating changes in relative humidity.(3)The instantaneous elastic deformation,viscoelastic deformation,viscous deformation and total creep deflection of GFRP are positively correlated with the stress level of the external load applied to the specimen.Still,the specimen’s creep recovery rate is negatively correlated with the stress level of the external load applied to the specimen.The static creep deflection and viscous deformation of GFRP increase with the increase of the relative humidity of the environment.(4)The MSC maximum creep deflection of GFRP increased by only 7.41%over the NC maximum creep deflection,but the MSC maximum creep deflection of P increased by 199.25%over the NC maximum creep deflection.(5)The Burgers 4-factor model and the Weibull distribution equation can fit the NC and NC recovery processes of GFRP well. 展开更多
关键词 Glass fiber reinforced composite wood Normal Creep(NC) wood creep Mechanical Sorptive Creep(MSC) creep model
下载PDF
INVESTIGATION OF SOFTENING AGENT PREPARATION AND PERFORMANCE OF HANDMADE ECOCOMPOSITES WITH CONIFEROUS WOOD AND BASALT FIBERS 被引量:2
10
作者 Guangjian Wang1,2 , Deku Shang1 ,Kailiang Zhang1 , Linna Hu1 ,Zhenhua Guo11.P.O.Box 493, the School of Material Science and Engineering, Hebei University of Technology, 300130 Tianjin, P.R. China 2.Department of Chemistry, Huaibei Coal Normal College, 235000 Huaibei, Anhui Province, P.R. China 《天津科技大学学报》 CAS 2004年第A02期63-66,共4页
In this investigation, basalt mineral fiber softening agent was prepared in order to obtain desirable flexible performance. Stability and physical chemistry natures of softening agent were evaluated by particle size d... In this investigation, basalt mineral fiber softening agent was prepared in order to obtain desirable flexible performance. Stability and physical chemistry natures of softening agent were evaluated by particle size distribution, dilution, storage and folding endurance etc. Constitutes of basalt and wood fibers were determined by energy dispersion analysis X-ray which served as an accessory of scanning electron microscopy (SEM-EDAX). Naturally degradable ecocomposite was prepared by basalt and wood fibers. The results of SEM observation illustrated that the wood and basalt fibers were blended uniformly. The impact factors of beating degree, content of wood fibers and adhesive etc. were discussed. The structure of the naturally degradable ecocomposite was contrasted with that of pure wood fibers and the cause of excellent filtration performance was analyzed. Compared with traditional methods, it was of saving wood resource, a large amount of water and reducing second pollution. As a consequence, the ecocomposite harmonized with environment and accorded with requirement of benignly friendly environment. 展开更多
关键词 无机木质混合纤维 玄武岩纤维 软化剂 生态合成 二次污染 过滤
下载PDF
Reinforcing effects of modified Kevlar~ fiber on the mechanical properties of wood-flour/polypropylene composites 被引量:7
11
作者 YUAN Fei-pin OU Rong-xian +1 位作者 XIE Yan-jun WANG Qing-wen 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期149-153,共5页
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated w... Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites. 展开更多
关键词 wood flour/Polypropylene composite Kevlar fiber HYDROLYSIS REINFORCEMENT impact strength
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
12
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 wood-plastic composites Flax fiber REINFORCEMENT PROCESSING Mechanical property Creep resistance
下载PDF
Determination of fiber length and juvenile and mature wood zones in Acer velutinum Boiss.trees grown in Iran
13
作者 Majid KIAEI Reza BAKHSHI Samane VEYLAKI 《Forestry Studies in China》 CAS 2012年第4期323-326,共4页
In our investigation we studied fiber lengths and the transition age from juvenile to mature wood in Acer velutinum Boiss. For this purpose, samples from three normal maple trees at a Noshahr site in northern Iran wer... In our investigation we studied fiber lengths and the transition age from juvenile to mature wood in Acer velutinum Boiss. For this purpose, samples from three normal maple trees at a Noshahr site in northern Iran were selected. Disks were cut at breast height. Test samples were taken along a radial direction from the pith to the bark, accounting for every ring during a 48-year period. We used the Franklin method to distinguish between fibers of juvenile and mature wood. The results show that the fiber length in- creased along the radial direction from the pith to the bark. The transition age between juvenile and mature wood was determined at the 14th annual ring from the pith. 展开更多
关键词 Acer velutinum Boiss. transition age juvenile wood mature wood fiber length
下载PDF
Effects of carbonization temperatures on microstructure of carbon fiber precursors prepared from liquefied wood
14
作者 MA Xiao-j un ZHAO Guang-jie 《Forestry Studies in China》 CAS 2009年第4期238-242,共5页
In order to enlarge the utilization field of wood and decrease the costs of carbon fibers, carbon fiber precursors from liquefied wood were prepared by soaking liquefied wood in a solution containing hydrochloric acid... In order to enlarge the utilization field of wood and decrease the costs of carbon fibers, carbon fiber precursors from liquefied wood were prepared by soaking liquefied wood in a solution containing hydrochloric acid and formaldehyde, after melt-spinning by adding hexamethylenetetramine. The microstructure evolution of the precursor during carbonization was studied by FTIR, X-ray analysis and Raman spectroscopy. The results show that precursors from liquefied wood above 400℃had diffraction peaks corresponding to the (100) crystal plane. When the carbonization temperature reached 500℃, Raman spectroscopy showed the D peak at wave number of 1360 cm^-1 and the G peak at 1595 cm^-1. By increasing the carbonization temperature, the microstructure of the precursors became more ordered. Although the structure of the precursor changed at 500 and 800℃, the peaks at 1632 and 1454 cm^-1 corresponding to the characteristic vibrations of aromatic rings, remained during carbonization. This implies that the precursor from liquefied wood cannot be easily formed into graphite. 展开更多
关键词 carbon fiber liquefied wood MICROSTRUCTURE TEMPERATURE
下载PDF
三种木材纤维微细结构分析及制浆性能研究 被引量:4
15
作者 刘忠明 李阳 +3 位作者 王文波 王守娟 刘梦茹 孔凡功 《造纸科学与技术》 2024年第3期6-10,共5页
制浆造纸企业纤维原料供应持续紧缺,如何拓宽原料来源渠道是造纸企业普遍关心的问题。为缓解造纸原料短缺的问题,采用柳树、美人梅、猕猴桃作为制浆造纸原料,分析三种木材原料的组分、纤维长度、宽度以及表面形态,解析纤维的红外结构、... 制浆造纸企业纤维原料供应持续紧缺,如何拓宽原料来源渠道是造纸企业普遍关心的问题。为缓解造纸原料短缺的问题,采用柳树、美人梅、猕猴桃作为制浆造纸原料,分析三种木材原料的组分、纤维长度、宽度以及表面形态,解析纤维的红外结构、元素组成、结晶度、热稳定性。柳树、美人梅、猕猴桃纤维的长度范围分别为:0.1 mm~1.2 mm,0.1 mm~1.0 mm,0.1 mm~2.0 mm,平均宽度分别为16.5μm,15.7μm,25.1μm,长宽比分别为27.2,30.6,35.9猕猴桃纤维的长度范围、宽度和长宽比均优于柳树和美人梅,具有造纸的潜力。通过硫酸盐法蒸煮实验发现柳树、美人梅、猕猴桃三种木材具有较高的制浆得率,纸张物理性能良好,能够满足生产质量的要求,可以替代部分现有的纤维原料,以减轻造纸工业对木材原料需求的压力,缓解制浆造纸原料短缺的问题。 展开更多
关键词 原料短缺 木材纤维 制浆性能 微细结构
下载PDF
Effects of different modifiers on the properties of wood-polymer composites 被引量:7
16
作者 许民 才智 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期77-79,J004,共4页
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ... Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai 展开更多
关键词 wood fiber Thermoplastic polyester wood-polymer composites MODIFIER Mechanical properties
下载PDF
Determination of Some Physical and Mechanical Properties of the Wood-Based Panels Modified by Acrylic Textile Fiber
17
作者 Mustafa Altunok Ihsan Kureli Mehlika Pulat 《Materials Sciences and Applications》 2015年第6期519-526,共8页
In this research, a series of wood-based panels were produced by using wood chips [beech (Fagus Sylvatica L.) and Scotch pine (Pinus sylvestris L.)] as wastes of wood-working workshops and acrylic fibers as wastes of ... In this research, a series of wood-based panels were produced by using wood chips [beech (Fagus Sylvatica L.) and Scotch pine (Pinus sylvestris L.)] as wastes of wood-working workshops and acrylic fibers as wastes of textiles factory. Four kinds of different panels (Eltapan I, II, III and IV) were obtained by mixing these components in different composition (0%, 25% and 50%). Some physical and mechanical properties of the samples taken from these panels were determined in accordance with ASTM D1037-12 and ASTM-C 1113. The values were compared to properties of industrially produced chipboard. As a result, the textile fibers used as additive material reduced density, thermal conductivity and bending resistance of wood panel and increased dimensional stability of wood panel. 展开更多
关键词 Modification ACRYLIC fiber wood CHIPS wood Based Composites Density Thermal CONDUCTIVITY DIMENSIONAL Stability BENDING Strength
下载PDF
基于纤维解离水曲柳压缩解离特征与能量耗散机制研究
18
作者 许威 曹军 +1 位作者 花军 陈光伟 《包装工程》 CAS 北大核心 2024年第3期284-291,共8页
目的以水曲柳为研究对象,研究高应变率压缩载荷作用下水曲柳试件的解离特征和能量耗散机制。方法利用压缩加载试验分析应变率、加载方向对受载水曲柳的形态特征影响和动力学特性,并利用弹塑性基本原理分析其受压解离的能量耗散机制。结... 目的以水曲柳为研究对象,研究高应变率压缩载荷作用下水曲柳试件的解离特征和能量耗散机制。方法利用压缩加载试验分析应变率、加载方向对受载水曲柳的形态特征影响和动力学特性,并利用弹塑性基本原理分析其受压解离的能量耗散机制。结果解离后径向加载试件主要呈火柴棍状,弦向加载试件主要呈片状,轴向加载试件主要呈不规则块状,试件的解离程度随应变率的增大而增大;当应变率在400~1000 s^(-1)时,水曲柳试件的应力-应变曲线由弹性阶段和屈服后弱线性强化阶段两部分组成;水曲柳试件的屈服强度随应变率的增大而增大,当应变率从400s^(-1)增加到1000s^(-1)时,径向、弦向和轴向加载试件的屈服强度分别增加了0.45倍、1.34倍和0.71倍;木材原料沿径、弦向解离时主要依靠木材细胞的压缩变形来耗散能量,沿轴向解离时主要依靠木材细胞纵向结构的弯曲来耗散能量。结论弦向最易解离,轴向最难解离;水曲柳是一种应变率敏感材料;木材原料径、弦向解离主要依靠压缩变形来耗散能量,轴向解离主要依靠弯曲变形来耗散能量,木材原料解离能够耗散能量的多少主要受加载方向、木材细胞的结构尺寸和力学性能的影响。 展开更多
关键词 木材 纤维解离 应变率 解离特征 能量耗散机制
下载PDF
不同木纤维对水泥基胶凝材料水化进程的影响研究
19
作者 张佳阳 张吉秀 +3 位作者 王猛 段赛红 高志杰 舒春雪 《新型建筑材料》 2024年第7期44-47,59,共5页
木纤维的加入可改善水泥基胶凝材料的抗拉强度,但只采用机械破碎及沸煮处理的木纤维对水泥基胶凝材料有缓凝、阻凝作用,阻碍了木纤维在水泥制品中的应用,为提升木质家具企业的木纤维利用率,从机械破碎的松木、杂木纤维的长径比着手,研... 木纤维的加入可改善水泥基胶凝材料的抗拉强度,但只采用机械破碎及沸煮处理的木纤维对水泥基胶凝材料有缓凝、阻凝作用,阻碍了木纤维在水泥制品中的应用,为提升木质家具企业的木纤维利用率,从机械破碎的松木、杂木纤维的长径比着手,研究经碱法预处理的木纤维对水泥基胶凝材料水化进程的影响。结果表明:未预处理的杂木纤维只影响水泥早期水化热释放速率,对水泥水化热释放总量影响较小,未预处理的松木纤维具有明显的阻凝作用;采用Ca(OH)_(2)溶液浸泡可以有效降低木纤维对水泥水化的缓凝作用,与其他碱液浸泡相比,采用Ca(OH)_(2)浸泡可避免水泥胶凝体系引入其他物质。 展开更多
关键词 木纤维 碱法处理 水泥水化热
下载PDF
Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation
20
作者 Yosr Laatiri Habib Sammouda Fadhel Aloulou 《Journal of Renewable Materials》 EI CAS 2024年第4期771-798,共28页
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul... This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems. 展开更多
关键词 CEMENT wood fiber PCM thermal conductivity thermal insulation solar energy
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部