期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Different Hardeners on the Working Properties and Bonding Strength of Urea-formaldehyde Adhesives
1
作者 YIN Suzhou TANG Chanjuan HAN ShuguangCollege of Wood Science and Technology. Nanjing Forestry University Naniine 210037. P. R. China 《Chinese Forestry Science and Technology》 2003年第3期28-36,共9页
The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause... The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause the formation of poisonous dioxin when waste boards are combusted and hence considered as a potential source of pollution. To assess the feasibility of substituting ammonium sulphate for ammonium chloride, working properties and bonding strength were measured for UF adhesives with the two ... 展开更多
关键词 AU resin HARDENER ammonium chloride ammonium sulphate DIOXIN working properties
原文传递
Effect of Extrusion Temperature on the Microstructure and Mechanical Properties of Mg–5Al–2Ca Alloy 被引量:3
2
作者 Kun Su Kun-kun Deng +4 位作者 Fang-jun Xu Kai-bo Nie Li Zhang Xiao Zhang Wei-jian Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1015-1023,共9页
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amo... In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K. 展开更多
关键词 Mg–Al–Ca alloy Extrusion Microstructure Mechanical properties Work hardening
原文传递
Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies
3
作者 Changxin Qi Zhenyue Yang +3 位作者 Jinyan Zhi Ruichao Zhang Juan Wen Yong Qin 《Nano Research》 SCIE EI CSCD 2023年第9期11783-11800,共18页
As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and... As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and portable electronic devices.However,due to inherent working properties of TENG itself such as extremely high internal impedance,pulse,and alternating current(AC)output,TENG can not directly supply power to loads such as batteries efficiently.Based on these,we describe TENG’s performance from a new perspective of powering ability.It consists of two aspects:the ability to transport charge effectively and the ability to output high power quality current steadily.In order to push forward the developments and applications of TENG,it is necessary to improve its power supply capacity from different perspectives.Fortunately,in recent years,a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress.Herein,this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG.Then,on basis of theoretical analysis,the output signal’s management strategies are elaborated from four aspects:improving the cycle output electricity of TENG,increasing the surface charge density of TENG,improving the power quality of TENG-based energy harvesting system,promoting the application of TENG through integrated circuit(IC)technology and TENG network,and the relevant principles and applications are discussed systematically.Finally,the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed,and the future development of the output signal’s management strategies for TENG is prospected. 展开更多
关键词 triboelectric nanogenerator(TENG) inherent working properties TENG-based energy harvesting system powering ability output signal’s management strategies.
原文传递
Tensile behavior and deformation mechanism of quenching and partitioning treated steels at different deforming temperatures 被引量:1
4
作者 Lian bo Luo Wei Li +2 位作者 Yu Gong Li Wang Xue-jun Jin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第11期1104-1108,共5页
The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing... The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation. 展开更多
关键词 Quenching and partitioning treated steel Mechanical property Deforming temperature Retained austenite Work hardening behavior
原文传递
Graphene electrode with tunable charge transport in thin-film transistors
5
作者 Ick-Joon Park Tae In Kim +7 位作者 In-Tak Cho Chang-Woo Song Ji-Woong Yang Hongkeun Park Woo-Seok Cheong Sung Gap Im Jong-Ho Lee Sung-Yool Choi 《Nano Research》 SCIE EI CAS CSCD 2018年第1期274-286,共13页
Graphene, a single atomic layer of sp2-hybridized carbon, has immense potential as a transparent conducting material in electronic applications owing to its superior properties, including optical transparency and high... Graphene, a single atomic layer of sp2-hybridized carbon, has immense potential as a transparent conducting material in electronic applications owing to its superior properties, including optical transparency and high conductivity. Particularly, the tunable work function of graphene enables the integration of graphene electrodes with various electronic devices. To achieve high performance in graphene-based devices, effective charge transport between the graphene electrode and the semiconducting material needs to be optimized; this is closely related to the modulation of the Schottky barrier (SB). In this study, we investigate the ~nable charge transport properties as a function of graphene doping in n-channel thin-film transistors (TFTs) in terms of the electrical characteristics and low-frequency noise (LFN) behaviors. Alkali metal carbonates tuned the work function of graphene, resulting in a dramatic decrease in the SB and an improvement of the carrier injection in n-channel TFTs. The electrical performance of the TFTs was evaluated by extraction of the field-effect mobilities and ratio of contact resistance to total resistance. Furthermore, the level of contact noise created by the barrier height fluctuation and relative contribution of channel noise and contact noise in the TFTs was investigated by LFN measurements to demonstrate the ~nable charge transport. Our findings therefore provide new insights into the tunable charge transport mechanism in graphene-based devices and reveal the immense potential of graphene as electrodes in high performance flexible and transparent displays. 展开更多
关键词 charge transport graphene doping Schottky barrier work function contact property low-frequency noise
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部