The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it...The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it streamed the scenes as video series to play through network. Therefore, cloud gaming is a capable approach, which quickly increases the cloud computing platform. Obtaining enhanced user experience in cloud gaming structure is not insignificant task because user anticipates less response delay and high quality videos. To achieve this, cloud providers need to be able to accurately predict irregular player workloads in order to schedule the necessary resources. In this paper, an effective technique, named as Fractional Rider Deep Long Short Term Memory (LSTM) network is developed for workload prediction in cloud gaming. The workload of each resource is computed based on developed Fractional Rider Deep LSTM network. Moreover, resource allocation is performed by fractional Rider-based Harmony Search Algorithm (Rider-based HSA). This Fractional Rider-based HSA is developed by combining Fractional calculus (FC), Rider optimization algorithm (ROA) and Harmony search algorithm (HSA). Moreover, the developed Fractional Rider Deep LSTM is developed by integrating FC and Rider Deep LSTM. In addition, the multi-objective parameters, namely gaming experience loss QE, Mean Opinion Score (MOS), Fairness, energy, network parameters, and predictive load are considered for efficient resource allocation and workload prediction. Additionally, the developed workload prediction model achieved better performance using various parameters, like fairness, MOS, QE, energy and delay. Hence, the developed Fractional Rider Deep LSTM model showed enhanced results with maximum fairness, MOS, QE of 0.999, 0.921, 0.999 and less energy and delay of 0.322 and 0.456.展开更多
With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,prov...With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,providing prediction information of the cloud services can be very beneficial for the service providers,as they need to carefully predict their business growths and efficiently manage their resources.To optimize the use of cloud services,predictive mechanisms can be applied to improve resource utilization and reduce energy-related costs.However,such mechanisms need to be provided with energy awareness not only at the level of the Physical Machine(PM)but also at the level of the Virtual Machine(VM)in order to make improved cost decisions.Therefore,this paper presents a comprehensive literature review on the subject of energy-related cost issues and prediction models in cloud computing environments,along with an overall discussion of the closely related works.The outcomes of this research can be used and incorporated by predictive resource management techniques to make improved cost decisions assisted with energy awareness and leverage cloud resources efficiently.展开更多
With the striking rise in penetration of Cloud Computing,energy consumption is considered as one of the key cost factors that need to be managed within cloud providers’infrastructures.Subsequently,recent approaches a...With the striking rise in penetration of Cloud Computing,energy consumption is considered as one of the key cost factors that need to be managed within cloud providers’infrastructures.Subsequently,recent approaches and strategies based on reactive and proactive methods have been developed for managing cloud computing resources,where the energy consumption and the operational costs are minimized.However,to make better cost decisions in these strategies,the performance and energy awareness should be supported at both Physical Machine(PM)and Virtual Machine(VM)levels.Therefore,in this paper,a novel hybrid approach is proposed,which jointly considered the prediction of performance variation,energy consumption and cost of heterogeneous VMs.This approach aims to integrate auto-scaling with live migration as well as maintain the expected level of service performance,in which the power consumption and resource usage are utilized for estimating the VMs’total cost.Specifically,the service performance variation is handled by detecting the underloaded and overloaded PMs;thereby,the decision(s)is made in a cost-effective manner.Detailed testbed evaluation demonstrates that the proposed approach not only predicts the VMs workload and consumption of power but also estimates the overall cost of live migration and auto-scaling during service operation,with a high prediction accuracy on the basis of historical workload patterns.展开更多
文摘The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it streamed the scenes as video series to play through network. Therefore, cloud gaming is a capable approach, which quickly increases the cloud computing platform. Obtaining enhanced user experience in cloud gaming structure is not insignificant task because user anticipates less response delay and high quality videos. To achieve this, cloud providers need to be able to accurately predict irregular player workloads in order to schedule the necessary resources. In this paper, an effective technique, named as Fractional Rider Deep Long Short Term Memory (LSTM) network is developed for workload prediction in cloud gaming. The workload of each resource is computed based on developed Fractional Rider Deep LSTM network. Moreover, resource allocation is performed by fractional Rider-based Harmony Search Algorithm (Rider-based HSA). This Fractional Rider-based HSA is developed by combining Fractional calculus (FC), Rider optimization algorithm (ROA) and Harmony search algorithm (HSA). Moreover, the developed Fractional Rider Deep LSTM is developed by integrating FC and Rider Deep LSTM. In addition, the multi-objective parameters, namely gaming experience loss QE, Mean Opinion Score (MOS), Fairness, energy, network parameters, and predictive load are considered for efficient resource allocation and workload prediction. Additionally, the developed workload prediction model achieved better performance using various parameters, like fairness, MOS, QE, energy and delay. Hence, the developed Fractional Rider Deep LSTM model showed enhanced results with maximum fairness, MOS, QE of 0.999, 0.921, 0.999 and less energy and delay of 0.322 and 0.456.
文摘With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,providing prediction information of the cloud services can be very beneficial for the service providers,as they need to carefully predict their business growths and efficiently manage their resources.To optimize the use of cloud services,predictive mechanisms can be applied to improve resource utilization and reduce energy-related costs.However,such mechanisms need to be provided with energy awareness not only at the level of the Physical Machine(PM)but also at the level of the Virtual Machine(VM)in order to make improved cost decisions.Therefore,this paper presents a comprehensive literature review on the subject of energy-related cost issues and prediction models in cloud computing environments,along with an overall discussion of the closely related works.The outcomes of this research can be used and incorporated by predictive resource management techniques to make improved cost decisions assisted with energy awareness and leverage cloud resources efficiently.
文摘With the striking rise in penetration of Cloud Computing,energy consumption is considered as one of the key cost factors that need to be managed within cloud providers’infrastructures.Subsequently,recent approaches and strategies based on reactive and proactive methods have been developed for managing cloud computing resources,where the energy consumption and the operational costs are minimized.However,to make better cost decisions in these strategies,the performance and energy awareness should be supported at both Physical Machine(PM)and Virtual Machine(VM)levels.Therefore,in this paper,a novel hybrid approach is proposed,which jointly considered the prediction of performance variation,energy consumption and cost of heterogeneous VMs.This approach aims to integrate auto-scaling with live migration as well as maintain the expected level of service performance,in which the power consumption and resource usage are utilized for estimating the VMs’total cost.Specifically,the service performance variation is handled by detecting the underloaded and overloaded PMs;thereby,the decision(s)is made in a cost-effective manner.Detailed testbed evaluation demonstrates that the proposed approach not only predicts the VMs workload and consumption of power but also estimates the overall cost of live migration and auto-scaling during service operation,with a high prediction accuracy on the basis of historical workload patterns.