期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Solving Invariant Problem of Cauchy Means Based on Wronskian Determinant
1
作者 Yingjun Ni Fen Wang 《Advances in Pure Mathematics》 2024年第7期515-522,共8页
This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtaine... This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained. 展开更多
关键词 Cauchy Mean wronskian Determinant Arithmetic Mean Invariant Equation
下载PDF
Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation 被引量:2
2
作者 YAO Zhen-Zhi ZHANG Chun-Yi +4 位作者 ZHU Hong-Wu MENG Xiang-Hua LU Xing SHAN Wen-Rui TIAN Bo 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第5期1125-1128,共4页
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an ex... In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae. 展开更多
关键词 variable-coefficient Kadomtsev-Petviashvili equation wronskian determinant Grammian deter-minant PFAFFIAN Jacobi identity
下载PDF
Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form 被引量:2
3
作者 MENG Xiang-Hua TIAN Bo +2 位作者 FENG Qian YAO Zhen-Zhi GAO Yi-Tian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1062-1068,共7页
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas... In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. 展开更多
关键词 (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation Painlev@ analysis bilinear form wronskian determinant Grammian determinant symbolic computation
下载PDF
Bcklund Transformation and Multisoliton Solutions in Terms of Wronskian Determinant for (2+1)-Dimensional Breaking Soliton Equations with Symbolic Computation 被引量:1
4
作者 秦渤 田播 +2 位作者 刘立才 孟祥花 刘文军 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期1059-1066,共8页
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea... In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts. 展开更多
关键词 breaking soliton equations Hirota bilinear form B/icklund transformation wronskian determinant symbolic computation
下载PDF
Wronskian Form of N-Solitonic Solution for a Variable-Coefficient Korteweg-de Vries Equation with Nonuniformities
5
作者 CAI Ke-Jie TIAN Bo +5 位作者 ZHANG Cheng ZHANG Huan MENG Xiang-Hua LU Xing GENG Tao LIU Wen-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1185-1188,共4页
By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution i... By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique. 展开更多
关键词 variable-coefficient KdV equation bilinear auto-Bocklund transformation N-solitonic solution wronskian determinant
下载PDF
The Wronskian technique for nonlinear evolution equations
6
作者 成建军 张鸿庆 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期514-519,共6页
The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenome... The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions. 展开更多
关键词 nonlinear evolution equations wronskian determinant Young diagram
下载PDF
Wronskian and Grammian solutions for the(3+1)-dimensional Jimbo—Miwa equation
7
作者 苏朋朋 唐亚宁 陈妍呐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期153-160,共8页
In this paper, based on Hirota's bilinear method, the Wronskian and Grammian techniques, as well as several properties of the determinant, a broad set of sufficient conditions consisting of systems of linear partial ... In this paper, based on Hirota's bilinear method, the Wronskian and Grammian techniques, as well as several properties of the determinant, a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented. They guarantee that the Wronskian determinant and the Grammian determinant solve the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form. Then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions. At last, with the aid of Maple, some of these special exact solutions are shown graphically. 展开更多
关键词 (3+1)-dimensional Jimbo-Miwa equation wronskian determinant Grammian determi- nant exact solution
下载PDF
Extended Wronskian Determinant Approach and Iterative Solutions ofOne-Dimensional Dirac Equation
8
作者 XUYing LUMeng SURu-Keng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第6期859-866,共8页
An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave... An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave functions, is established. We employ this approach to study the one-dimensional Dirac equation with one-well potential,and give the energy levels and wave functions up to the first order iterative approximation. For double-well potential,the energy levels up to the first order approximation are given. 展开更多
关键词 extended wronskian determinant approach iteration method double-well potential
下载PDF
Exact solutions of the Schrodinger equation for a class of hyperbolic potential well
9
作者 Xiao-Hua Wang Chang-Yuan Chen +3 位作者 Yuan You Fa-Lin Lu Dong-Sheng Sun Shi-Hai Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期109-115,共7页
We propose a new scheme to study the exact solutions of a class of hyperbolic potential well.We first apply different forms of function transformation and variable substitution to transform the Schrodinger equation in... We propose a new scheme to study the exact solutions of a class of hyperbolic potential well.We first apply different forms of function transformation and variable substitution to transform the Schrodinger equation into a confluent Heun differential equation and then construct a Wronskian determinant by finding two linearly dependent solutions for the same eigenstate.And then in terms of the energy spectrum equation which is obtained from the Wronskian determinant,we are able to graphically decide the quantum number with respect to each eigenstate and the total number of bound states for a given potential well.Such a procedure allows us to calculate the eigenvalues for different quantum states via Maple and then substitute them into the wave function to obtain the expected analytical eigenfunction expressed by the confluent Heun function.The linearly dependent relation between two eigenfunctions is also studied. 展开更多
关键词 hyperbolic potential well Schrodinger equation wronskian determinant confluent Heun function
下载PDF
Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation 被引量:1
10
作者 吴建平 耿献国 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第11期556-560,共5页
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d... Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed. 展开更多
关键词 (3+1)-dimensional generalized KP equation wronskian determinant solutions N-soliton solu-tions periodic solutions rational solutions
原文传递
Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant 被引量:1
11
作者 FENG RuYong YU JianPing 《Science China Mathematics》 SCIE 2008年第10期1763-1774,共12页
In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian deter... In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method. 展开更多
关键词 mechanical theorem proving Wu-Ritt’s characteristic set method local theory of surface wronskian determinant 12H99 53A05
原文传递
Exact solutions to the angular Teukolsky equation with s≠0
12
作者 Chang-Yuan Chen Xiao-Hua Wang +3 位作者 Yuan You Dong-Sheng Sun Fa-Lin Lu Shi-Hai Dong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第11期1-15,共15页
We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And t... We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane whenτis a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number l and the spin weight quantum number s satisfies the relation l=∣s∣+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real numberτ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary numberτ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.Whenτis a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than∣s∣. 展开更多
关键词 angular Teukolsky equation linearly dependent wronskian determinant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部