This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtaine...This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.展开更多
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an ex...In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea...In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.展开更多
By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution i...By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.展开更多
The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenome...The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.展开更多
In this paper, based on Hirota's bilinear method, the Wronskian and Grammian techniques, as well as several properties of the determinant, a broad set of sufficient conditions consisting of systems of linear partial ...In this paper, based on Hirota's bilinear method, the Wronskian and Grammian techniques, as well as several properties of the determinant, a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented. They guarantee that the Wronskian determinant and the Grammian determinant solve the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form. Then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions. At last, with the aid of Maple, some of these special exact solutions are shown graphically.展开更多
An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave...An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave functions, is established. We employ this approach to study the one-dimensional Dirac equation with one-well potential,and give the energy levels and wave functions up to the first order iterative approximation. For double-well potential,the energy levels up to the first order approximation are given.展开更多
We propose a new scheme to study the exact solutions of a class of hyperbolic potential well.We first apply different forms of function transformation and variable substitution to transform the Schrodinger equation in...We propose a new scheme to study the exact solutions of a class of hyperbolic potential well.We first apply different forms of function transformation and variable substitution to transform the Schrodinger equation into a confluent Heun differential equation and then construct a Wronskian determinant by finding two linearly dependent solutions for the same eigenstate.And then in terms of the energy spectrum equation which is obtained from the Wronskian determinant,we are able to graphically decide the quantum number with respect to each eigenstate and the total number of bound states for a given potential well.Such a procedure allows us to calculate the eigenvalues for different quantum states via Maple and then substitute them into the wave function to obtain the expected analytical eigenfunction expressed by the confluent Heun function.The linearly dependent relation between two eigenfunctions is also studied.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian deter...In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.展开更多
We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And t...We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane whenτis a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number l and the spin weight quantum number s satisfies the relation l=∣s∣+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real numberτ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary numberτ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.Whenτis a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than∣s∣.展开更多
文摘This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.
基金The project supported by the Key Project of the Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金National Natural Science Foundation of China under Grant Nos.60372095 and 60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE07-001Beijing University of Aeronautics and Astronautics,and the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
文摘In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l+2 种基金Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.
基金supported by National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+2 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024,the Ministry of Education
文摘By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379033,51522902,51579040,J1103110,and 11201048)
文摘The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11202161 and 11172233)the Basic Research Fund of the Northwestern Polytechnical University,China(Grant No.GBKY1034)
文摘In this paper, based on Hirota's bilinear method, the Wronskian and Grammian techniques, as well as several properties of the determinant, a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented. They guarantee that the Wronskian determinant and the Grammian determinant solve the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form. Then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions. At last, with the aid of Maple, some of these special exact solutions are shown graphically.
文摘An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave functions, is established. We employ this approach to study the one-dimensional Dirac equation with one-well potential,and give the energy levels and wave functions up to the first order iterative approximation. For double-well potential,the energy levels up to the first order approximation are given.
基金Project supported by the National Natural Science Foundation of China(Grant No.11975196)partially by SIP,Instituto Politecnico Nacional(IPN),Mexico(Grant No.20210414)。
文摘We propose a new scheme to study the exact solutions of a class of hyperbolic potential well.We first apply different forms of function transformation and variable substitution to transform the Schrodinger equation into a confluent Heun differential equation and then construct a Wronskian determinant by finding two linearly dependent solutions for the same eigenstate.And then in terms of the energy spectrum equation which is obtained from the Wronskian determinant,we are able to graphically decide the quantum number with respect to each eigenstate and the total number of bound states for a given potential well.Such a procedure allows us to calculate the eigenvalues for different quantum states via Maple and then substitute them into the wave function to obtain the expected analytical eigenfunction expressed by the confluent Heun function.The linearly dependent relation between two eigenfunctions is also studied.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.
基金the National Key Basic Research Project of China (Grant No.2004CB318000)
文摘In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.
基金supported by the National Natural Science Foundation of China(Grant No.11975196)partially by 20220355-SIP,IPN。
文摘We first convert the angular Teukolsky equation under the special condition ofτ≠0,s≠0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane whenτis a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number l and the spin weight quantum number s satisfies the relation l=∣s∣+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real numberτ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary numberτ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.Whenτis a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than∣s∣.