In this paper, we derive five basic identities for Sheffer polynomials by using generalized Pascal functional and Wronskian matrices. Then we apply twelve basic identities for Sheffer polynomials, seven from previous ...In this paper, we derive five basic identities for Sheffer polynomials by using generalized Pascal functional and Wronskian matrices. Then we apply twelve basic identities for Sheffer polynomials, seven from previous results, to degenerate Bernoulli polynomials and Korobov polynomials of the first kind and get some new identities. In addition, letting λ→ 0 in such identities gives us those for Bernoulli polynomials and Bernoulli polynomials of the second kind.展开更多
基金supported by the Research Grant of Kwangwoon University in 2018
文摘In this paper, we derive five basic identities for Sheffer polynomials by using generalized Pascal functional and Wronskian matrices. Then we apply twelve basic identities for Sheffer polynomials, seven from previous results, to degenerate Bernoulli polynomials and Korobov polynomials of the first kind and get some new identities. In addition, letting λ→ 0 in such identities gives us those for Bernoulli polynomials and Bernoulli polynomials of the second kind.