Studies concerning correlations between pituitary adenomas and cell apoptosis have mainly focused on upstream apoptosis signaling, but seldom on downstream mediators. In the present study, second mitochondria-derived ...Studies concerning correlations between pituitary adenomas and cell apoptosis have mainly focused on upstream apoptosis signaling, but seldom on downstream mediators. In the present study, second mitochondria-derived activator of caspases (Smac), X-linked inhibitor of apoptosis protein (XIAP), and caspase-3 protein were qualitatively analyzed using immunohistochemistry, and quantified by western blot. Smac, XIAP, and caspase-3 mRNA expressions were detected by reverse transcription-PCR. Results showed that XIAP protein and mRNA expressions were greater in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. However, Smac and caspase-3 protein and mRNA expressions were lower in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. In the invasive pituitary adenomas, Smac expression was positively correlated with caspase-3 protein and mRNA expression (Protein: r = 0.55, P 0.01; mRNA: r = 0.50, P 0.01). Smac and caspase-3 expressions were negatively correlated with XIAP protein and mRNA expression (Protein: r = -0.56, -0.64, P 0.01; mRNA: r = -0.69, -0.67, P 0.01). However, no significant differences in correlation among Smac, XIAP, and caspase-3 were detectable in noninvasive pituitary adenomas. These data indicated that high expression of XIAP and low expression of Smac and caspase-3 suppressed cell apoptosis and led to enhanced invasiveness of pituitary adenomas. Thus, Smac, XIAP, and caspase-3 may be useful markers in determining the invasive behavior of pituitary adenomas.展开更多
The expression of X-linked inhibitor of apoptosis protein (XIAP) gene and its effect on chemotherapeutic sensitivity in bladder carcinoma was explored. By using immunohistochemistry, the expression of XIAP was detecte...The expression of X-linked inhibitor of apoptosis protein (XIAP) gene and its effect on chemotherapeutic sensitivity in bladder carcinoma was explored. By using immunohistochemistry, the expression of XIAP was detected in 47 bladder carcinomas and 5 normal bladder tissues. The XIAP gene was transfected into bladder cancer cell line T24 by liposome and the positive clone was screened by G418. Cellular XIAP mRNA level was detected by RT-PCR. Low-dose mitocycin C was administered to induce the apoptosis of T24 cells. The in vitro growth of bladder carcinoma cells was analyzed by MTT colorimetry, and the apoptosis rate was assayed by TUNEL methods. It was found XIAP was moderately expressed in bladder carcinomas with the the positive rate being 78.73% (37/47), but the positive rate was not correlated with carcinoma stages and grades (P<0.05). XIAP mRNA level in transfected T24 cells was significantly increased by 3.8 times as compared with that in the cells not transfected with XIAP. After treatment with low-dose mitomycin C (0.005 and 0.05 mg/mL), the growth rate in XIAP no-transfected control group was increased by (11.60±0.25)% and (16.51±0.87)% (P<0.05), and the apoptosis rate was decreased by (10.1±0.2)% and (11.9±0.2%) (P<0.05) respectively as compared with XIAP transfected group. It was concluded that XIAP was expressed in most of bladder carcimoma samples. Overexpression of XIAP in T24 could significantly reduce the MMC-induced apoptosis of bladder carcinoma, suggesting its effect on the chemothera- peutic sensitivity of T24 cells.展开更多
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (D...AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.展开更多
Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-reg...Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.展开更多
文摘Studies concerning correlations between pituitary adenomas and cell apoptosis have mainly focused on upstream apoptosis signaling, but seldom on downstream mediators. In the present study, second mitochondria-derived activator of caspases (Smac), X-linked inhibitor of apoptosis protein (XIAP), and caspase-3 protein were qualitatively analyzed using immunohistochemistry, and quantified by western blot. Smac, XIAP, and caspase-3 mRNA expressions were detected by reverse transcription-PCR. Results showed that XIAP protein and mRNA expressions were greater in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. However, Smac and caspase-3 protein and mRNA expressions were lower in the invasive pituitary adenoma group compared with the noninvasive pituitary adenoma group. In the invasive pituitary adenomas, Smac expression was positively correlated with caspase-3 protein and mRNA expression (Protein: r = 0.55, P 0.01; mRNA: r = 0.50, P 0.01). Smac and caspase-3 expressions were negatively correlated with XIAP protein and mRNA expression (Protein: r = -0.56, -0.64, P 0.01; mRNA: r = -0.69, -0.67, P 0.01). However, no significant differences in correlation among Smac, XIAP, and caspase-3 were detectable in noninvasive pituitary adenomas. These data indicated that high expression of XIAP and low expression of Smac and caspase-3 suppressed cell apoptosis and led to enhanced invasiveness of pituitary adenomas. Thus, Smac, XIAP, and caspase-3 may be useful markers in determining the invasive behavior of pituitary adenomas.
基金a grant from National Natu-ral Sciences Foundation of China (No. 30271301)
文摘The expression of X-linked inhibitor of apoptosis protein (XIAP) gene and its effect on chemotherapeutic sensitivity in bladder carcinoma was explored. By using immunohistochemistry, the expression of XIAP was detected in 47 bladder carcinomas and 5 normal bladder tissues. The XIAP gene was transfected into bladder cancer cell line T24 by liposome and the positive clone was screened by G418. Cellular XIAP mRNA level was detected by RT-PCR. Low-dose mitocycin C was administered to induce the apoptosis of T24 cells. The in vitro growth of bladder carcinoma cells was analyzed by MTT colorimetry, and the apoptosis rate was assayed by TUNEL methods. It was found XIAP was moderately expressed in bladder carcinomas with the the positive rate being 78.73% (37/47), but the positive rate was not correlated with carcinoma stages and grades (P<0.05). XIAP mRNA level in transfected T24 cells was significantly increased by 3.8 times as compared with that in the cells not transfected with XIAP. After treatment with low-dose mitomycin C (0.005 and 0.05 mg/mL), the growth rate in XIAP no-transfected control group was increased by (11.60±0.25)% and (16.51±0.87)% (P<0.05), and the apoptosis rate was decreased by (10.1±0.2)% and (11.9±0.2%) (P<0.05) respectively as compared with XIAP transfected group. It was concluded that XIAP was expressed in most of bladder carcimoma samples. Overexpression of XIAP in T24 could significantly reduce the MMC-induced apoptosis of bladder carcinoma, suggesting its effect on the chemothera- peutic sensitivity of T24 cells.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.
基金Shanghai Medical Key Discipline Construction Foundation(05-Ⅲ-005-017).
文摘Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.