The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LU...Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.展开更多
Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried ...Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.展开更多
Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C fo...Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.展开更多
This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a ...This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.展开更多
TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray ...TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.展开更多
Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Elect...Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.展开更多
Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide...Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.展开更多
As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties a...As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.展开更多
X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is...X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
文摘Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.
文摘Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.
文摘Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.
基金Project supported by the National Natural Science Foundation of China (Grant No 102750770)
文摘This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.
基金This work was supported by the National Natural Science Foundation of China under grant No.10474074the Hubei Natural Science Foundation under grant No.2001ABB060.
文摘TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.
文摘Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.
文摘Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.
文摘As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2004CB619302), and the National Natural Science Foundation of China (Grant No 50271038).
文摘X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.