Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (includi...Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.展开更多
Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weat...Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.展开更多
Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, t...Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.展开更多
New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’...New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’s NEXTRAD network has started since 1998, and this project is supported by national debt. In this paper the author addresses the development of NEXTRAD techniques, the pre\|sent situation of construction and application of NEXTRAD in China, some problems to be carefully considered in construction, and seve\|ral new fields of future radar technique developments and applications in weather monitoring.展开更多
By using Doppler weather radar data,the meso-scale characteristics of extremely heavy rainstorm process which happened suddenly in Jieyang urban area on July 31,2008 were analyzed.The results showed that the radar ech...By using Doppler weather radar data,the meso-scale characteristics of extremely heavy rainstorm process which happened suddenly in Jieyang urban area on July 31,2008 were analyzed.The results showed that the radar echo only needed 20 minutes from the generation to the strong echo which quickly strengthened above 50 dBz.The storm center went down south and went up north near Jieyang City all the time.The component which moved eastward was very tiny,and the heavy precipitation echo stagnated.In this heavy precipitation process,the characteristics types of radial velocity which were favorable to the generation and development of heavy precipitation echo appeared alternately each other.The radial velocity's characteristics types were the first type headwind zone,the second type headwind zone,meso-scale convergence type and cyclonic convergence and so on.Thus,this heavy precipitation process which broke the record happened.The analyses showed that the headwind zone which developed vigorously and the convergence which had influx and outflux airflow in the vertical direction of headwind zone made obvious contributions to the precipitation.展开更多
The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of...The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.展开更多
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel...A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.展开更多
Doppler radar have become one of the most important instruments for weather now casting,and for meso-scale weather research because of its higher spatial and temporal resolutions. A dealing system for Doppler radar gr...Doppler radar have become one of the most important instruments for weather now casting,and for meso-scale weather research because of its higher spatial and temporal resolutions. A dealing system for Doppler radar graphic was researched and implemented so as to providing a convenient tool for users. We research and realized CINRAD/XD Doppler radar's graphic system. It contains three important parts:reading,standardization and pretreatment. It can be used very easily and conveniently. Besides,the system can be expanded and transplanted simply.展开更多
This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two...This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two dual Doppler weather radars during the summer and early fall of 2015. Averages and respective standard deviations of polarimetric variables, namely, reflectivity (Z), differential reflectivity (Z<sub>DR</sub>), differential phase (ϕ<sub>DP</sub>), specific differential phase (K<sub>DP</sub>), copolar correlation coefficient (ρ<sub>oHV</sub>), radial velocity (V<sub>r</sub>), and the spectral width (W) were obtained within a 240-km range on plan position indicator (PPI), constant altitude plan position indicator (CAPPI) and vertical cross-sections to analyze overall horizontal and vertical precipitation microphysics and mesoscale circulation of prevailing weather systems, and their peculiarities over coastal and oceanic, and urban and rural areas. Overall, raindrops tend to be larger over the Metropolitan area of São Paulo from the surface to up to 6 km altitude indicating more vigorous updrafts caused by the heat island effect and the local sea breeze. The vertical microphysical structure is remarkably distinct over the Metropolitan Area of São Paulo (MASP) where thunderstorms can reach 20-km altitude in summertime under sea breeze and heat island effects. On the other hand, there is a dominancy of smaller drop sizes though larger ones observed close to the surface by the coast of Espírito Santo and at the land-ocean interface influenced by the local low-level jet and oceanic-type CCN. Convective cells tend to be smaller associated with Easterlies and more organized with Westerlies. The results indicate distinct features on hydrometeor types and circulation characteristics under these different surface and boundary-layer conditions in close agreement with previous results in the literature.展开更多
This paper describes the procedure and methodology to formulate the convective weather potential (CWP) algorithm. The data used in the development of the algorithm are the radar echoes at 0.5° elevation from Gu...This paper describes the procedure and methodology to formulate the convective weather potential (CWP) algorithm. The data used in the development of the algorithm are the radar echoes at 0.5° elevation from Guangzhou Doppler Radar Station, surface observations from automatic weather stations (AWS) and outputs of numeric weather prediction (NWP) models. The procedure to develop the CWP algorithm consists of two steps: (1) identification of thunderstorm cells in accordance with specified statistical criteria; and (2) development of the algorithm based on multiple linear regression. The thunderstorm cells were automatically identified by radar echoes with intensity greater than or equal to 50 dB(Z) and of an area over 64 square kilometers. These cells are generally related to severe convective weather occurrences such as thunderstorm wind gusts, hail and tornados. In the development of the CWP algorithm, both echo- and environment-based predictors are used. The predictand is the probability of a thunderstorm cell to generate severe convective weather events. The predictor-predictand relationship is established through a stepwise multiple linear regression approach. Verification with an independent dataset shows that the CWP algorithm is skillful in detecting thunderstorm-related severe convective weather occurrences in the Pearl River Delta (PRD) region of South China. An example of a nowcasting case for a thunderstorm process is illustrated.展开更多
[Objective] The research aimed to analyze an easterly wave thunderstorm and gale weather during the latter flood season of 2010.[Method] Based on conventional observation data,data of automatic station,NCEP 1°...[Objective] The research aimed to analyze an easterly wave thunderstorm and gale weather during the latter flood season of 2010.[Method] Based on conventional observation data,data of automatic station,NCEP 1°×1° reanalysis data,Doppler radar reflectivity and radial velocity data,the easterly wave thunderstorm and gale weather process which happened during 4-5 August,2010 was analyzed.The circulation situation,wind field and dynamic & thermal structures of easterly wave,echo characteristics of Doppler radar when thunderstorm and gale happened were studied.[Result] The thunderstorm and gale weather happened in the northeaster zone in front of the deep thick easterly wave trough.When thunderstorm and gale weather happened,position of the subtropical high was by north(ridge line was at 35° N).Eastward movement of the north branch of trough compelled subtropical high splitting into east and west circles.Westward extension of the east subtropical high and saddle-type field circulation were favorable for generation and development of the easterly wave.As development and westward movement of the easterly wave,in the influence zone in front of the trough,upper easterly component transmitted downward.Then,low-level northeaster obviously strengthened,and thunderstorm and gale weather appeared.In the zone where thunderstorm and gale happened,airflow had cyclonic convergence at the middle and low layers and anti-cyclonic divergence near the ground layer.Subsidence movement was obvious.Moreover,thermal force structure that it tended to be dry and cold at the middle and high layers,warm and wet at the low layer existed.Supercell storm was at the developed stage on 4th.It had obvious mesocyclone and hooked echo characteristics(meso-and small-scale characteristics).Characteristics of the squall line,gale region and adverse wind region appeared in central west Guangdong on 5th.Doppler characteristics of the mesocyclone,hooked echo,squall line,gale region and adverse wind region had indication significance for short-imminent forecast of the thunderstorm and gale.[Conclusion] This research revealed some information which had significance for forecasting local easterly wave thunderstorm and gale weather.展开更多
Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the int...Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the intensity of wind shear line, and gives some examples.展开更多
基金the Knowledge Innovation Program of Chinese Academy Sciences (KZX3-SW-352)Frontier Program of Institute of Mountain Hazards and Environment, CAS (C3200307)
文摘Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.
基金Guangdong Basic and Applied Basic Research Foundation(2020A1515010602)Special Fund of China Meteorological Administration for Innovation and Development(CXFZ2022J063)+4 种基金Special Fund for Forecasters of China Meteorological Administration(CMAYBY2019-082)Science and Technology Planning Program of Guangzhou(201903010101)Key-Area Research and Development Program of Guangdong Province(2020B1111200001)National Natural Science Foundation of China(42075190,41875182)Radar Application and Shortterm Severe-weather Predictions and Warnings Technology Program(GRMCTD202002)。
文摘Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.
基金Qinghai province key laboratory open fund of disaster prevention and reduction(QHKF201401)Key technology projects of China Meteorological Bureau(CMAGJ2014M21)+3 种基金National Natural Science Fund(41675029,41401504,41671425,41565008)Key Scientific Research Projects in Colleges and Universities(17A170005)China Postdoctoral Fund(2016M602232)Foundation of Henan University(2015YBZR020)
文摘Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.
文摘New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’s NEXTRAD network has started since 1998, and this project is supported by national debt. In this paper the author addresses the development of NEXTRAD techniques, the pre\|sent situation of construction and application of NEXTRAD in China, some problems to be carefully considered in construction, and seve\|ral new fields of future radar technique developments and applications in weather monitoring.
基金Supported by The State Natural Science Fund Project(40875025, 40875030,40775033)Shanghai Natural Science Fund Project (08ZR1422900)
文摘By using Doppler weather radar data,the meso-scale characteristics of extremely heavy rainstorm process which happened suddenly in Jieyang urban area on July 31,2008 were analyzed.The results showed that the radar echo only needed 20 minutes from the generation to the strong echo which quickly strengthened above 50 dBz.The storm center went down south and went up north near Jieyang City all the time.The component which moved eastward was very tiny,and the heavy precipitation echo stagnated.In this heavy precipitation process,the characteristics types of radial velocity which were favorable to the generation and development of heavy precipitation echo appeared alternately each other.The radial velocity's characteristics types were the first type headwind zone,the second type headwind zone,meso-scale convergence type and cyclonic convergence and so on.Thus,this heavy precipitation process which broke the record happened.The analyses showed that the headwind zone which developed vigorously and the convergence which had influx and outflux airflow in the vertical direction of headwind zone made obvious contributions to the precipitation.
基金The National Natural Science Foundation of China under contract Nos 41376179 and 41106153the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404
文摘The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.
文摘A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.
基金The important science and technology itemof Jiangsu province.(BR2004012)
文摘Doppler radar have become one of the most important instruments for weather now casting,and for meso-scale weather research because of its higher spatial and temporal resolutions. A dealing system for Doppler radar graphic was researched and implemented so as to providing a convenient tool for users. We research and realized CINRAD/XD Doppler radar's graphic system. It contains three important parts:reading,standardization and pretreatment. It can be used very easily and conveniently. Besides,the system can be expanded and transplanted simply.
文摘This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two dual Doppler weather radars during the summer and early fall of 2015. Averages and respective standard deviations of polarimetric variables, namely, reflectivity (Z), differential reflectivity (Z<sub>DR</sub>), differential phase (ϕ<sub>DP</sub>), specific differential phase (K<sub>DP</sub>), copolar correlation coefficient (ρ<sub>oHV</sub>), radial velocity (V<sub>r</sub>), and the spectral width (W) were obtained within a 240-km range on plan position indicator (PPI), constant altitude plan position indicator (CAPPI) and vertical cross-sections to analyze overall horizontal and vertical precipitation microphysics and mesoscale circulation of prevailing weather systems, and their peculiarities over coastal and oceanic, and urban and rural areas. Overall, raindrops tend to be larger over the Metropolitan area of São Paulo from the surface to up to 6 km altitude indicating more vigorous updrafts caused by the heat island effect and the local sea breeze. The vertical microphysical structure is remarkably distinct over the Metropolitan Area of São Paulo (MASP) where thunderstorms can reach 20-km altitude in summertime under sea breeze and heat island effects. On the other hand, there is a dominancy of smaller drop sizes though larger ones observed close to the surface by the coast of Espírito Santo and at the land-ocean interface influenced by the local low-level jet and oceanic-type CCN. Convective cells tend to be smaller associated with Easterlies and more organized with Westerlies. The results indicate distinct features on hydrometeor types and circulation characteristics under these different surface and boundary-layer conditions in close agreement with previous results in the literature.
文摘This paper describes the procedure and methodology to formulate the convective weather potential (CWP) algorithm. The data used in the development of the algorithm are the radar echoes at 0.5° elevation from Guangzhou Doppler Radar Station, surface observations from automatic weather stations (AWS) and outputs of numeric weather prediction (NWP) models. The procedure to develop the CWP algorithm consists of two steps: (1) identification of thunderstorm cells in accordance with specified statistical criteria; and (2) development of the algorithm based on multiple linear regression. The thunderstorm cells were automatically identified by radar echoes with intensity greater than or equal to 50 dB(Z) and of an area over 64 square kilometers. These cells are generally related to severe convective weather occurrences such as thunderstorm wind gusts, hail and tornados. In the development of the CWP algorithm, both echo- and environment-based predictors are used. The predictand is the probability of a thunderstorm cell to generate severe convective weather events. The predictor-predictand relationship is established through a stepwise multiple linear regression approach. Verification with an independent dataset shows that the CWP algorithm is skillful in detecting thunderstorm-related severe convective weather occurrences in the Pearl River Delta (PRD) region of South China. An example of a nowcasting case for a thunderstorm process is illustrated.
文摘[Objective] The research aimed to analyze an easterly wave thunderstorm and gale weather during the latter flood season of 2010.[Method] Based on conventional observation data,data of automatic station,NCEP 1°×1° reanalysis data,Doppler radar reflectivity and radial velocity data,the easterly wave thunderstorm and gale weather process which happened during 4-5 August,2010 was analyzed.The circulation situation,wind field and dynamic & thermal structures of easterly wave,echo characteristics of Doppler radar when thunderstorm and gale happened were studied.[Result] The thunderstorm and gale weather happened in the northeaster zone in front of the deep thick easterly wave trough.When thunderstorm and gale weather happened,position of the subtropical high was by north(ridge line was at 35° N).Eastward movement of the north branch of trough compelled subtropical high splitting into east and west circles.Westward extension of the east subtropical high and saddle-type field circulation were favorable for generation and development of the easterly wave.As development and westward movement of the easterly wave,in the influence zone in front of the trough,upper easterly component transmitted downward.Then,low-level northeaster obviously strengthened,and thunderstorm and gale weather appeared.In the zone where thunderstorm and gale happened,airflow had cyclonic convergence at the middle and low layers and anti-cyclonic divergence near the ground layer.Subsidence movement was obvious.Moreover,thermal force structure that it tended to be dry and cold at the middle and high layers,warm and wet at the low layer existed.Supercell storm was at the developed stage on 4th.It had obvious mesocyclone and hooked echo characteristics(meso-and small-scale characteristics).Characteristics of the squall line,gale region and adverse wind region appeared in central west Guangdong on 5th.Doppler characteristics of the mesocyclone,hooked echo,squall line,gale region and adverse wind region had indication significance for short-imminent forecast of the thunderstorm and gale.[Conclusion] This research revealed some information which had significance for forecasting local easterly wave thunderstorm and gale weather.
文摘Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the intensity of wind shear line, and gives some examples.