期刊文献+
共找到666篇文章
< 1 2 34 >
每页显示 20 50 100
Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin,northern South China Sea
1
作者 Yuanhang Liu Jinwei Gao +2 位作者 Wanli Chen Jiliang Wang Umair Khan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期25-39,共15页
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ... Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons. 展开更多
关键词 Post-rift normal faults fault throw Karst caves Corrosive fluids Pearl River Mouth Basin South China Sea
下载PDF
Genetic models of structural traps related to normal faults in the Putaohua Oilfield,Songliao Basin 被引量:3
2
作者 Sun Simin Wu Xinsong +1 位作者 Liu Hongtao Wang Changsheng 《Petroleum Science》 SCIE CAS CSCD 2008年第4期302-307,共6页
The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual f... The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth. 展开更多
关键词 Songliao Basin Putaohua Oilfield accommodation zone normal fault growth structural trap
下载PDF
Segmentations of active normal dip-slip faults around Ordos block according to their surface ruptures in historical strong earthquakes 被引量:2
3
作者 沈德福 江娃利 +1 位作者 肖振敏 谢新生 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第5期552-562,共11页
From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted syste... From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit. 展开更多
关键词 surface rupture fault segmentation historical strong earthquakes normal dip-slip faults Ordos block
下载PDF
Power-law Distribution of Normal Fault Displacement and Length and Estimation of Extensional Strain due to Normal Faults:A Case Study of the Sierra de San Miguelito, Mexico 被引量:1
4
作者 XUShunshan A.F.NIETO-SAMANIEGO S.A.ALANIZ-ALVAREZ 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期36-42,共7页
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Dom... The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830. The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation. 展开更多
关键词 power-law distribution normal faults small faults finite strain Mexico
下载PDF
A novel mitigation measure for normal fault-induced deformations on pile-raft systems
5
作者 Mohammadreza Jahanshahi Nowkandeh Mehdi Ashtiani 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期15-33,共19页
Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures tha... Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock. 展开更多
关键词 normal fault rupture failure mechanism pile-raft system pocket connection finite element modeling
下载PDF
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:12
6
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
下载PDF
Fault-Growth Pattern of the South Margin Normal Fault of the Yuguang Basin in Northwest Beijing and its Influencing Factors 被引量:5
7
作者 WANG Lin TIAN Qinjian +1 位作者 LI Dewen ZHANG Xiaoliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期707-719,共13页
Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the ev... Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the evolution of the Yuguang Basin South Margin Fault (YBSMF) in northwest Beijing was carried out. We found that the propagation and growth of faults most often occurred often at two locations: the fault overlapping zone and the uneven or rough fault segment. Through detailed observation and analysis of all cropouts of faults along the YBSMF from zone a to zone i, we identified three major factors that dominate or affect fault propagation and growth. First, the irregularity of fault geometry determine the propagation and growth of the fault, and therefore, the faults always propagate and grow at such irregular fault segments. The fault finally cuts off and eliminates its irregularity, making the fault geometry and fault plane smoother than before, which contributes to the slipping movement of the half-graben block in the basin. Second, the scale of the irregularity of the fault geometry affects the result of fault propagation and growth, that is, the degree of the cutting off of fault irregularity. The degree of cutting off decreases as irregularity scale increases. Third, the maximum possible slip displacement of the fault segment influences the duration of fault propagation and growth. The duration at the central segments with a large slip displacement is longer than that at the end segments with a smaller slippage value. 展开更多
关键词 normal fault fault propagation and growth fault overlapping zone irregular fault segment
下载PDF
Seismic response of tunnel under normal fault slips by shaking table test technique 被引量:13
8
作者 FAN Ling CHEN Jie-ling +3 位作者 PENG Shu-quan QI Bin-xi ZHOU Qi-wen WANG Fan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1306-1319,共14页
Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu... Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip. 展开更多
关键词 TUNNEL normal fault EARTHQUAKE fault slip shaking table test peak acceleration
下载PDF
Modeling of normal faulting in the subducting plates of the Tonga,Japan,Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening 被引量:5
9
作者 ZHOU Zhiyuan LIN Jian ZHANG Fan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期53-60,共8页
The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate... The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief. 展开更多
关键词 normal fault geodynamic model plate weakening flexural bending elasto-plastic deformation
下载PDF
Influences of pre-existing fracture on ground deformation induced by normal faulting in mixed ground conditions 被引量:8
10
作者 蔡奇鹏 吴宏伟 +1 位作者 骆冠勇 胡平 《Journal of Central South University》 SCIE EI CAS 2013年第2期501-509,共9页
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo... Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata. 展开更多
关键词 centrifuge modeling pre-existing fracture ground deformation normal faulting EARTHQUAKE
下载PDF
Normal Faulting Type Earthquake Activities in the Tibetan Plateau and Its Tectonic Implication 被引量:3
11
作者 XU Jiren ZHAO Zhixin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期135-144,共10页
This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results sho... This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on_seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak. 展开更多
关键词 normal faulting earthquake focal mechanism solution eastward extensional motion stressfield gravitational collapse
下载PDF
Possible dynamics of normal-fault earthquakes in the upper crust of the south part of the Qinghai-Xizang Plateau 被引量:2
12
作者 张东宁 许忠淮 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第2期233-239,共7页
A numerical model for generating normal fault earthquakes in the Qinghai-Xizang Plateau′S upper crust is constructed with 3-D elasto-viscous finite element method. Based on the numerical simulation calculation,some c... A numerical model for generating normal fault earthquakes in the Qinghai-Xizang Plateau′S upper crust is constructed with 3-D elasto-viscous finite element method. Based on the numerical simulation calculation,some conclusions were got:If the effective viscosity of the upper crust material is less than that of lower strata of the crust in the Qinghai-Xizang Plateau, even under the strong push of India continent,the stress state of the upper crust can still be extensional in south part of the Qinghai-Xizang Plateau.Numerical simulations show that the stress state changes with the depth of the lithosphere,from extensional stress state in upper crust to compressive in the lower part.Extensional stress state may exist mainly in the upper crust of the south part of the Qinghai-Xizang Plateau. 展开更多
关键词 Qinghai-Xizang subplate normal fault seismic activity finite element effective viscosity
下载PDF
Sliding modes of fault activation under constant normal stiffness conditions 被引量:3
13
作者 Chuanqing Zhang Jie Xu +3 位作者 Shengji Jin Guojian Cui Yuhang Guo Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1213-1225,共13页
Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)c... Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip. 展开更多
关键词 fault activation Rock friction mechanics Sliding modes Constant normal stiffness(CNS) Displacement-controlled loading rates ROCKBURST
下载PDF
Normal Fault Slips of the March 2021 Greece Earthquake Sequence from InSAR Observations 被引量:4
14
作者 Chuang SONG Chen YU +1 位作者 Gauhar MELDEBEKOVA Zhenhong LI 《Journal of Geodesy and Geoinformation Science》 2022年第1期50-59,共10页
In March 2021,a seismic sequence including three Mw>5.5 events struck northern Thessaly,Greece.Owing to the high temporal resolution of Sentinel-1 images which were sampled every 6 days and recorded the three event... In March 2021,a seismic sequence including three Mw>5.5 events struck northern Thessaly,Greece.Owing to the high temporal resolution of Sentinel-1 images which were sampled every 6 days and recorded the three events separately,we are able to map individually the coseismic deformation fields of the three events.Based on their respective coseismic displacements,we determined the geometry of the fault plane for each earthquake with the method of multipeak particle swarm optimization and inverted the best-fitting slip distribution by linear least squares inversion.Modelling results show that the three events occurred successively on 3,4 and 12 March 2021 were all dominated by normal-slip motions on previously unknown faults within the top 15 km of the Earth’s crust.The 3 March 2021 Mw 6.3 earthquake ruptured a northeast-dipping fault with a strike angle of 301°(clockwise from the North)and a dip angle of 46°,producing the maximum slip of about 2.2 m.The slip motion of the 4 March 2021 Mw 5.9 aftershock shows a similar fault geometry(striking 297°and dipping 42°)to the 3 March mainshock,but with a considerably smaller dip-slip component(~0.8 m).The 12 March 2021 Mw 5.6 aftershock occurred on a southwest-dipping fault(striking 100°and dipping 40°)with a normal fault slip of up to 0.5 m.Static Coulomb stress changes triggered by the earthquake sequence imply a promotion relationship between the first 3 March event and the two subsequent events.Due to the coseismic stress perturbation,more than 70%of aftershocks were distributed in areas with increased Coulomb stress and the northwest segment of the Larissa fault close to the seismic sequence was exposed to a relatively high seismic risk. 展开更多
关键词 Greece earthquake INSAR normal fault slip distribution Coulomb stress
下载PDF
Control of relay structure on mineralization of sedimentary-exhalative ore deposit in growth faults of graben systems 被引量:1
15
作者 奚小双 汤静如 +1 位作者 孔华 何绍勋 《Journal of Central South University of Technology》 2005年第3期340-345,共6页
Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits, i.e., Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloo... Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits, i.e., Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloor exhalative sulfide deposits in the ancient graben systems are controlled by relay structures in normal faults. The shapes of metallogenic basins are composed of tilting ramp, fault-tip ramp and relay ramp, which dominate migration of gravity current of ore-hosted fluid and shape of orebody sedimentary fan in the ramp. By measuring and comparing the difference of length-to-thickness ratios of orebody sedimentary fan, the result shows that the occurrence of the ramp has a remarkable impact on the shape of orebody. 展开更多
关键词 exhalative ore deposits growth fault in graben systems relay ramp in normal faults metallegenesis of basins
下载PDF
A model test on an open-cut tunnel structure under the effect of a stick-slip normal fault 被引量:1
16
作者 Zhiqiang Zhang Xingyu Zhu Ronghua Wei 《Railway Sciences》 2022年第2期169-192,共24页
Purpose–Large displacement misalignment under the action of active faults can cause complex threedimensional deformation in subway tunnels,resulting in severe damage,distortion and misalignment.There is no developed ... Purpose–Large displacement misalignment under the action of active faults can cause complex threedimensional deformation in subway tunnels,resulting in severe damage,distortion and misalignment.There is no developed system of fortification and related codes to follow.There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.Design/methodology/approach–This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2,which passes through the Jiujiawan normal fault.The test simulated the subway tunnel passing through the normal fault,which is inclined at 608.This research compared and analyzed the differences in mechanical behavior between two types of lining section:the opencut double-line box tunnel and the modified double-line box arch tunnel.The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.Findings–The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance.Longitudinal cracks were mainly distributed in the baseplate,wall foot and arch foot,and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure.This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure,leading to an excessive local bending moment of the structure,which resulted in large eccentric failure of the lining and formation of longitudinal cracks.Compared with the ordinary box section tunnel,the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall.The damage area and crack length were reduced by 39 and 59.3%,respectively.This indicates that the improved double-line box arch tunnel had good anti-sliding performance.Originality/value–This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation.This system increased the similarity ratio of the test model,improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test.It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment,to study its force characteristics and damage modes,and to provide a technical reserve for the design and construction of subway tunnels through active faults. 展开更多
关键词 normal fault STICK-SLIP Open-cut tunnel Model test Failure characteristics
下载PDF
Influence factors on the ground surface rupture zone induced by buried normal fault dislocation
17
作者 Jianfeng Qi Fengjunnan Liu +1 位作者 Xiangyu Yang Yang Zhao 《Earthquake Science》 2020年第2期62-71,共10页
The seismic disaster presents a zonal distribution along the fault strike.In this paper,rupture zone of ground surface soil caused by the uniform dislocation,inclined dislocation and warped dislocation of buried norma... The seismic disaster presents a zonal distribution along the fault strike.In this paper,rupture zone of ground surface soil caused by the uniform dislocation,inclined dislocation and warped dislocation of buried normal fault are studied by constituting a three-dimensional finite element model in Automatic Dynamic Incremental Nonlinear Analysis(ADINA).According to the critical value of surface rupture,the variational features and influencing factors of width and starting position of the"avoiding zone"in engineering construction are analyzed by using 96 model calculations.The main results are as follows:(1)Since the rupture zone of the ground surface soil from the point of mechanics is different from the"avoidance zone"from the point of engineering safety,the equivalent plastic strain and the total displacement ratio should be considered to evaluate the effect of the seismic ground movement on buildings.(2)During fault dislocation,plastic failure firstly occurred on the ground surface soil of the footwall side,and then the larger deformation gradually moved to the side of the hanging wall of the fault with the increase of fault displacement.(3)When the vertical displacement of buried fault reaches 3 m,the width of"avoiding zone"in engineering construction varies within the range of 10-90 m,which is most affected by the thickness of overlying soil and the dip angle of the fault. 展开更多
关键词 buried normal fault surface rupture avoiding zone numerical simulation influence factors
下载PDF
Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization
18
作者 Sihua Wang Wenhui Zhang +2 位作者 Gaofei Zheng Xujie Li Yougeng Zhao 《Energy Engineering》 EI 2022年第6期2431-2445,共15页
In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA dat... In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification. 展开更多
关键词 Wind farm wind turbine group normalization stack noise reduction autoencoding fault diagnosis
下载PDF
Late Cenozoic Normal Faulting on the Western Side of Wenquan Graben, Central Qianghai-Xizang(Tibet) Plateau
19
作者 Wu Zhonghai Ye Peisheng +4 位作者 Liu Qisheng Wu Zhenhan Hu Daogong Zhao Xitao Zhou Chunjing 《Earthquake Research in China》 2005年第2期152-169,共18页
A near NS-strike east-dipping normal fault is developed on the western side of Wenquan graben in the central Qinghal-Xizang(Tibet) Plateau. It is the western marginal fault of the graben and has been intensely activ... A near NS-strike east-dipping normal fault is developed on the western side of Wenquan graben in the central Qinghal-Xizang(Tibet) Plateau. It is the western marginal fault of the graben and has been intensely active. It is a product of the near EW extension and deformation of the central northern Qinghal-Xizang(Tibet) Plateau since the late Cenozoic under the effect of the collision of the India and Eurasia plates. Since the late Cenozoic, the maximum vertical displacement on the fault was greater than 2. ! km, and the dislocated Mesozoic fold stratum reveals a maximum accumulative throw of 6.0 ± 2.2km. Quaternary faulting took place many times along the fault, creating multi-set piedmont fault facets and multi-level fault scarplets.According to the height of fault scarps that result from the vertical offset of the late Quaternary strata and geomorphic provinces, the maximum slip rate of the fault is estimated to have been less than 1.2mm/a since the late Quaternary, averaging 0.45mm/a. The trenching across the fault reveals that at least 3 paleoearthquakes of varied magnitudes have occurred since the late Epipleistocene. In view of the characteristics of Cenozoic faulting, it is concluded that the fault will act as a dominant seismogenic fault for earthquakes of M6.0 to M7.0 that are most likely to occur in the future. 展开更多
关键词 Wenquan graben East-west extension normal fault PALEOEARTHQUAKE Qinghai-Xizang (Tibet) Plateau
下载PDF
Satellite Data-based Structural Mapping Reveals Active Panjal Traps Fault(PTF)in Kashmir,NW Himalaya
20
作者 Afroz Ahmad SHAH Muhammad Gazali RACHMAN +1 位作者 Anushka VASHISTHA Ajay DASHORA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期58-61,共4页
Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,19... Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,1992;Wesnousky et al.,1999;Malik et al.,2010;Coudurier-Curveur et al.,2020;Shah et al.,2020).These faults are potentially dangerous due to their unknown risk and deformation budget,two of the most important aspects of mapping and understanding the vulnerability and hazards associated with active faults. 展开更多
关键词 gravitational tectonics active tectonics normal faults deformation domains HIMALAYA
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部