This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a ...This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.展开更多
As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile an...As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm, respectively. X-ray absorption spectroscopy has been used to identify the local Ti environment and related electronic structure. We combine the experimental results at the Ti edge in both bulk and nano-crystals to determine the lattice distortion in terms of differently characteristic preedge features and the variation in the multiple-scattering region of X-ray absorption near-edge structure (XANES) spectra. The relationship between the transition peaks and the surface-to volume ratio is also discussed.展开更多
Al filters with thickness from some hundreds of nanometer to several micrometers are widely used as attenuation and color filters in soft X-ray ranger. Al filters with thickness from 0.3 to 2.5 μm have been made by h...Al filters with thickness from some hundreds of nanometer to several micrometers are widely used as attenuation and color filters in soft X-ray ranger. Al filters with thickness from 0.3 to 2.5 μm have been made by heat or electron beam evaporating at Tongji University and Changchun Institute of Optical and Fine Mechanics. NaCl is展开更多
Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse re...Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results show that the presence of S. metallicus effectively enhances the dissolution of the mineral. The yield of zinc increases from 0.5 g/L in sterile control to 2.7 g/L in bioleaching. The pyrite in the concentrate facilitates zinc dissolution in the early stage, but has hindrance role in the late stage for the formation of jarosite. Sulfur speciation analyses show that jarosite and elemental sulfur are main products in bioleaching process, and the accumulation ofjarosite is mainly responsible for the decline of leaching efficiency.展开更多
The nanohardness H of multilayer specimens TiC/VC@Si and TiC/VC@Sapphire prepared by Pulsed-Laser-Deposition is investigated to check the existence of a superlattice effect as known from TiN/VN multilayers. In the pre...The nanohardness H of multilayer specimens TiC/VC@Si and TiC/VC@Sapphire prepared by Pulsed-Laser-Deposition is investigated to check the existence of a superlattice effect as known from TiN/VN multilayers. In the present work the multilayer period thickness λ varies between 1.34 nm and 24.8 nm (total layer thickness t ≈ 200 nm). Unlike Young’s modulus E, H is enhanced, regardless of t, by covering Si as well as sapphire with a TiC/VC multilayer;the relative load carrying capacity being larger for Si. The maximum value of H obtained is 38 GPa for TiC/VC@Sapphire. It is observed for a multilayer thickness of λ ≈ 10 nm. Hardness of TiC/VC@Sapphire obeys, after annealing, a Hall-Petch relation H = 35.25 + 6.945 λ–0.5 (H in GPa und λ≥ 10 nm). From orientation dependent X-ray absorption fine structure and X-ray reflection records, short-range order and layer geometry are derived. These analyses reveal a continuous approach of interatomic distances Ti-C and V-C for deceasing multilayer periods. High-resolution transmission electron microscopy shows that multilayers are nanostructured, i.e., not only TiC/VC phase boundaries but also subgrains represent obstacles against plastic deformation. Dislocations play a major role as sources of internal stress and vehicles of plasticity.展开更多
Based on the needs of detection and calibration with low-energy X-ray, we used the relationship characteristics of X-ray fluorescence, absorption and limit potential target excitation, developed the X-ray device with ...Based on the needs of detection and calibration with low-energy X-ray, we used the relationship characteristics of X-ray fluorescence, absorption and limit potential target excitation, developed the X-ray device with adjustable intensity (single photon to 107/s), optional energy points (4 keV - 20 keV), highly portable (≤1 kg), by the matching design of fluorescence energy conversion target and modulation means, coupled transport simulation of electron-photon in target, meanwhile, we solved the low-energy X-ray radiation field diagnose problems with HPGe detector, which calibrated with combined technique, including relatively wide energy efficiency simulation and single energy point of absolute efficiency calibration. In single-photon calibration field of soft X-ray pulsar navigation detect, the portable reference single energy radiation fields was applied effectively and got good result, the reference radiation fields provided perfect experiment means for the scientific study of pulsar navigation detecting, sun X-ray monitoring, etc.展开更多
The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at...The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at room temperature. From the MSC study. it is confirmed that the (22D2 molecule is bonded to a pair of adjacent Si adatom and Si restatom with C-Si bond length about 0.18nm. The carbon-deuteron bond is bent away front the surface and the CCD bond angle is about 120°. The molecule plane tilt slightly away from the surface normal. Compared with C2D2 in gas phase, the C-C bond and C-D bond are elongated by about 0.03nm and 0.02nm respectively when acetylene was adsorbed on the subtrate. Keyowrds: adsorption of deuteron acetylene on Si(111)7×7. near edge X- ray absorption fine structure. multiple scattering cluster method展开更多
High energy ball-milled iron sulfides with thin carb on layer coati ng(BM-FeS/C composites)were prepared by the simple and econo mical process.Ball-milled process,followed by carb on coati ng,reduced the particle size...High energy ball-milled iron sulfides with thin carb on layer coati ng(BM-FeS/C composites)were prepared by the simple and econo mical process.Ball-milled process,followed by carb on coati ng,reduced the particle size and increased the electrical con ductivity.Whe n employed as sodium-ion battery ano des,BM?F eS/C composites showed extremely high electrochemical performa nee with reversible specific capacity of 589.8 mAh·g^-1 after 100 cycles at a current density of 100 mA·g^-1.They also exhibited superior rate capabilities of 375.9 mAh·g^-1 even at 3.2 Ag^1 and 423.6 mAh·g^-1 at 1.5 Ag_1.X-ray absorptio n near edge structure an alysis con firmed the electrochemical pathway for con version reaction of BM-FeS/C composites.展开更多
Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology.A method based on synchrotron radiation X-ray fluorescence and X-ray absorp...Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology.A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs),which were sampled from 5 local fields in Shanghai,China.Annual SO2 concentration,SO42-concentration in atmospheric particulate,SO42-and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs.Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg.The mainly detected sulfur states and their corresponding compounds were +6 (sulfate,include inorganic sulfate and organic sulfate),+5.2 (sulfonate),+2.2 (suloxides),+0.6 (thiols and thiothers),+0.2 (organic sulfides).Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977,which suggested that sulfur accumulated in CTLs as sulfate form.Reduced sulfur compounds (organic sulfides,thiols,thioethers,sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg.The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination.From urban to suburb place,sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced,but a dramatic increase presented near the seashore,where the marine sulfate emission and maritime activity pollution were significant.The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment.展开更多
We present an optical and photoelectron spectroscopic study to elucidate the interfacial electronic properties of organic-inorganic semiconductor heterojunctions formed in a kinetically blocked heptazethrene triisopro...We present an optical and photoelectron spectroscopic study to elucidate the interfacial electronic properties of organic-inorganic semiconductor heterojunctions formed in a kinetically blocked heptazethrene triisopropylsilyl ethynylene (HZ-TIPS) and its homologue,octazethrene (OZ-TIPS) on an all-inorganic perovskite cesium lead bromide (CsPbBr3) surface.The photoluminescence behavior of the underlying perovskites upon differing molecular doping conditions was examined.It turns out that the charge transfer dynamics of thermally-evaporated OZ-TIPS molecule exhibited a faster average lifetime than that of the HZ-TIPS case suggesting the importance of the biradical state in the former molecule.An interfacial dipole was formed at the interface due to the competing interaction between the dispersion force of the bulky TIPS-substituent group and the attractive van der Waals interaction at the first few layers.Photoemission spectroscopy of the physisorbed HZ-TIPS shows chemical shifts,which indicates electron transfer from HZ-TIPS molecules to the CsPbBr3 perovskite single crystal.In contrast,the adsorbed OZ-TIPS molecular layer on CsPbBr3 demonstrates the opposite trend indicating a hole transfer process.The average molecular orientation as determined by near edge X-ray absorption fine structure (NEXAFS) suggests that the HZ-TIPS molecular plane is generally lifted with respect to the perovskite surface.We suggest that the nature of the closed-shell electronic ground state of HZ-TIPS could contribute to the formation of interfacial dipole at the molecule/perovskite interface.展开更多
Highly efficient and durable water oxidation electrocatalysts are critically important in a wide range of clean energy technologies,including water electrolyzers and rechargeable metal-air batteries.Here,we report a n...Highly efficient and durable water oxidation electrocatalysts are critically important in a wide range of clean energy technologies,including water electrolyzers and rechargeable metal-air batteries.Here,we report a novel sonochemical approach to synthesize amorphous nickel-iron oxides/carbon nanohybrids with tunable compositions for the oxygen evolution reaction (OER).The sonochemically synthesized amorphous electrocatalysts with optimal composition exhibit a low overpotential of 290 mV at 10 mA·cm-2 and a Tafel slope of 31 mV·decade-1 in a 0.1 M KOH electrolyte,outperforming the benchmark RuO2 catalyst.Meanwhile,these nanohybrids are also highly stable and remain amorphous even after prolonged cycling.In addition to amorphism,sonochemistry endows as-prepared nickel-iron oxides/carbon nanohybrids with a simultaneously formed carbon scaffold and internal Ni(0),which can enhance the stability and activity for the OER.This work demonstrates that sonochemistry is a unique method for synthesizing amorphous metal oxides toward an efficient and durable OER.展开更多
Thin silicon phthalocyanine dichloride films on HOPG were prepared and the sample was heated in the vacuum with laser. The thickness of the thin sample on HOPG was checked by X-ray photoemission spectroscopy. The orie...Thin silicon phthalocyanine dichloride films on HOPG were prepared and the sample was heated in the vacuum with laser. The thickness of the thin sample on HOPG was checked by X-ray photoemission spectroscopy. The orientation of the molecules in respect to the substrate plane was investigated by measuring the silicon K-edge near edge X-ray absorption fine structure (NEXAFS). In the NEXAFS spectra of the thin sample, two clear peaks which were assigned to Is → σ^*Si-N and 1s→ σ^*Si-Cl appeared around 1847.2 eV and 1843.1 eV respectively. The intensities of the resonance peaks showed strong polarization dependence. A quantitative analysis of the polarization dependence revealed that the Si-N bond tended to lie down while the Si-Cl bond was out of the molecular plane.展开更多
As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size...As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized 13-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using in-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and γ-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.展开更多
The total electron yield (TEY) mode has been developed successfully for XANES measurements at Beamline 4BTA of BSRF (Beijing Synchrotron Radiation Facility). Its performance was studied by measuring sulphur K-edge...The total electron yield (TEY) mode has been developed successfully for XANES measurements at Beamline 4BTA of BSRF (Beijing Synchrotron Radiation Facility). Its performance was studied by measuring sulphur K-edge XANES of three CdS samples (mixed with graphite powder as an electric conductor) with different concentration: 75%, 50~ and 25%. The data are collected in TEY mode and fluorescence yield (FY) mode respectively for comparison. The results demonstrate that the TEY spectra of three samples agree well with each other after the background is subtracted and normalized. The measured XANES spectra by TEY mode without bias and with 100V bias are almost identical to one another, but the signal-to-noise ratio of spectra measured without bias is better than that with 100V bias. The consistency of the self-absorption corrected FY spectra and TEY spectra are within 10% for the three samples.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 102750770)
文摘This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.
基金One of us (Z.Y. Wu) was supported by 100-Talent Research Program of The Chinese Academy of Sciences. One of the authors (K. Ibrahim) is grateful to the National Natural Science Foundation of China (NSFC) for financial support (Grant No. 10074063) The
文摘As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm, respectively. X-ray absorption spectroscopy has been used to identify the local Ti environment and related electronic structure. We combine the experimental results at the Ti edge in both bulk and nano-crystals to determine the lattice distortion in terms of differently characteristic preedge features and the variation in the multiple-scattering region of X-ray absorption near-edge structure (XANES) spectra. The relationship between the transition peaks and the surface-to volume ratio is also discussed.
文摘Al filters with thickness from some hundreds of nanometer to several micrometers are widely used as attenuation and color filters in soft X-ray ranger. Al filters with thickness from 0.3 to 2.5 μm have been made by heat or electron beam evaporating at Tongji University and Changchun Institute of Optical and Fine Mechanics. NaCl is
基金Project(50974140) supported by the National Natural Science Foundation of ChinaProject(VR-09157) supported by Beijing Synchrotron Radiation Facility (BSRF) Public User Program,China
文摘Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results show that the presence of S. metallicus effectively enhances the dissolution of the mineral. The yield of zinc increases from 0.5 g/L in sterile control to 2.7 g/L in bioleaching. The pyrite in the concentrate facilitates zinc dissolution in the early stage, but has hindrance role in the late stage for the formation of jarosite. Sulfur speciation analyses show that jarosite and elemental sulfur are main products in bioleaching process, and the accumulation ofjarosite is mainly responsible for the decline of leaching efficiency.
基金thank the German Research Foundation(DFG)for financial support
文摘The nanohardness H of multilayer specimens TiC/VC@Si and TiC/VC@Sapphire prepared by Pulsed-Laser-Deposition is investigated to check the existence of a superlattice effect as known from TiN/VN multilayers. In the present work the multilayer period thickness λ varies between 1.34 nm and 24.8 nm (total layer thickness t ≈ 200 nm). Unlike Young’s modulus E, H is enhanced, regardless of t, by covering Si as well as sapphire with a TiC/VC multilayer;the relative load carrying capacity being larger for Si. The maximum value of H obtained is 38 GPa for TiC/VC@Sapphire. It is observed for a multilayer thickness of λ ≈ 10 nm. Hardness of TiC/VC@Sapphire obeys, after annealing, a Hall-Petch relation H = 35.25 + 6.945 λ–0.5 (H in GPa und λ≥ 10 nm). From orientation dependent X-ray absorption fine structure and X-ray reflection records, short-range order and layer geometry are derived. These analyses reveal a continuous approach of interatomic distances Ti-C and V-C for deceasing multilayer periods. High-resolution transmission electron microscopy shows that multilayers are nanostructured, i.e., not only TiC/VC phase boundaries but also subgrains represent obstacles against plastic deformation. Dislocations play a major role as sources of internal stress and vehicles of plasticity.
文摘Based on the needs of detection and calibration with low-energy X-ray, we used the relationship characteristics of X-ray fluorescence, absorption and limit potential target excitation, developed the X-ray device with adjustable intensity (single photon to 107/s), optional energy points (4 keV - 20 keV), highly portable (≤1 kg), by the matching design of fluorescence energy conversion target and modulation means, coupled transport simulation of electron-photon in target, meanwhile, we solved the low-energy X-ray radiation field diagnose problems with HPGe detector, which calibrated with combined technique, including relatively wide energy efficiency simulation and single energy point of absolute efficiency calibration. In single-photon calibration field of soft X-ray pulsar navigation detect, the portable reference single energy radiation fields was applied effectively and got good result, the reference radiation fields provided perfect experiment means for the scientific study of pulsar navigation detecting, sun X-ray monitoring, etc.
基金The authors acknowledge the financial support of the National Natural Science Foun-dation of China (Grant No.19974036)
文摘The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at room temperature. From the MSC study. it is confirmed that the (22D2 molecule is bonded to a pair of adjacent Si adatom and Si restatom with C-Si bond length about 0.18nm. The carbon-deuteron bond is bent away front the surface and the CCD bond angle is about 120°. The molecule plane tilt slightly away from the surface normal. Compared with C2D2 in gas phase, the C-C bond and C-D bond are elongated by about 0.03nm and 0.02nm respectively when acetylene was adsorbed on the subtrate. Keyowrds: adsorption of deuteron acetylene on Si(111)7×7. near edge X- ray absorption fine structure. multiple scattering cluster method
文摘High energy ball-milled iron sulfides with thin carb on layer coati ng(BM-FeS/C composites)were prepared by the simple and econo mical process.Ball-milled process,followed by carb on coati ng,reduced the particle size and increased the electrical con ductivity.Whe n employed as sodium-ion battery ano des,BM?F eS/C composites showed extremely high electrochemical performa nee with reversible specific capacity of 589.8 mAh·g^-1 after 100 cycles at a current density of 100 mA·g^-1.They also exhibited superior rate capabilities of 375.9 mAh·g^-1 even at 3.2 Ag^1 and 423.6 mAh·g^-1 at 1.5 Ag_1.X-ray absorptio n near edge structure an alysis con firmed the electrochemical pathway for con version reaction of BM-FeS/C composites.
基金supported by the National Natural Science Foundation of China(No.11079049,11005141,10775150)the Major Project of Knowledge Innovation Program of Chinese Academy of Sciences(No.KJCX3.SYW.N3)
文摘Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology.A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs),which were sampled from 5 local fields in Shanghai,China.Annual SO2 concentration,SO42-concentration in atmospheric particulate,SO42-and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs.Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg.The mainly detected sulfur states and their corresponding compounds were +6 (sulfate,include inorganic sulfate and organic sulfate),+5.2 (sulfonate),+2.2 (suloxides),+0.6 (thiols and thiothers),+0.2 (organic sulfides).Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977,which suggested that sulfur accumulated in CTLs as sulfate form.Reduced sulfur compounds (organic sulfides,thiols,thioethers,sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg.The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination.From urban to suburb place,sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced,but a dramatic increase presented near the seashore,where the marine sulfate emission and maritime activity pollution were significant.The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment.
文摘We present an optical and photoelectron spectroscopic study to elucidate the interfacial electronic properties of organic-inorganic semiconductor heterojunctions formed in a kinetically blocked heptazethrene triisopropylsilyl ethynylene (HZ-TIPS) and its homologue,octazethrene (OZ-TIPS) on an all-inorganic perovskite cesium lead bromide (CsPbBr3) surface.The photoluminescence behavior of the underlying perovskites upon differing molecular doping conditions was examined.It turns out that the charge transfer dynamics of thermally-evaporated OZ-TIPS molecule exhibited a faster average lifetime than that of the HZ-TIPS case suggesting the importance of the biradical state in the former molecule.An interfacial dipole was formed at the interface due to the competing interaction between the dispersion force of the bulky TIPS-substituent group and the attractive van der Waals interaction at the first few layers.Photoemission spectroscopy of the physisorbed HZ-TIPS shows chemical shifts,which indicates electron transfer from HZ-TIPS molecules to the CsPbBr3 perovskite single crystal.In contrast,the adsorbed OZ-TIPS molecular layer on CsPbBr3 demonstrates the opposite trend indicating a hole transfer process.The average molecular orientation as determined by near edge X-ray absorption fine structure (NEXAFS) suggests that the HZ-TIPS molecular plane is generally lifted with respect to the perovskite surface.We suggest that the nature of the closed-shell electronic ground state of HZ-TIPS could contribute to the formation of interfacial dipole at the molecule/perovskite interface.
基金We thank the Photoemission Endstation (BL10B) in National Synchrotron Radiation Laboratory (NSRL) for collecting X-ray data. This work was supported by the National Key Basic Research Program of China (Nos. 2015CB351903 and 2014CB848900), the National Natural Science Foundation of China (Nos. 21474095, 11574280, 11605201, and U1532112), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), and the Fundamental Research Funds for the Central Universities.
文摘Highly efficient and durable water oxidation electrocatalysts are critically important in a wide range of clean energy technologies,including water electrolyzers and rechargeable metal-air batteries.Here,we report a novel sonochemical approach to synthesize amorphous nickel-iron oxides/carbon nanohybrids with tunable compositions for the oxygen evolution reaction (OER).The sonochemically synthesized amorphous electrocatalysts with optimal composition exhibit a low overpotential of 290 mV at 10 mA·cm-2 and a Tafel slope of 31 mV·decade-1 in a 0.1 M KOH electrolyte,outperforming the benchmark RuO2 catalyst.Meanwhile,these nanohybrids are also highly stable and remain amorphous even after prolonged cycling.In addition to amorphism,sonochemistry endows as-prepared nickel-iron oxides/carbon nanohybrids with a simultaneously formed carbon scaffold and internal Ni(0),which can enhance the stability and activity for the OER.This work demonstrates that sonochemistry is a unique method for synthesizing amorphous metal oxides toward an efficient and durable OER.
基金Nuclear Researchers Exchange Program 2005Photon Factory Program Advisory Committee (2004G340)
文摘Thin silicon phthalocyanine dichloride films on HOPG were prepared and the sample was heated in the vacuum with laser. The thickness of the thin sample on HOPG was checked by X-ray photoemission spectroscopy. The orientation of the molecules in respect to the substrate plane was investigated by measuring the silicon K-edge near edge X-ray absorption fine structure (NEXAFS). In the NEXAFS spectra of the thin sample, two clear peaks which were assigned to Is → σ^*Si-N and 1s→ σ^*Si-Cl appeared around 1847.2 eV and 1843.1 eV respectively. The intensities of the resonance peaks showed strong polarization dependence. A quantitative analysis of the polarization dependence revealed that the Si-N bond tended to lie down while the Si-Cl bond was out of the molecular plane.
文摘As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized 13-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using in-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and γ-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.
基金Supported by National Natural Science Foundation of China (10775150)
文摘The total electron yield (TEY) mode has been developed successfully for XANES measurements at Beamline 4BTA of BSRF (Beijing Synchrotron Radiation Facility). Its performance was studied by measuring sulphur K-edge XANES of three CdS samples (mixed with graphite powder as an electric conductor) with different concentration: 75%, 50~ and 25%. The data are collected in TEY mode and fluorescence yield (FY) mode respectively for comparison. The results demonstrate that the TEY spectra of three samples agree well with each other after the background is subtracted and normalized. The measured XANES spectra by TEY mode without bias and with 100V bias are almost identical to one another, but the signal-to-noise ratio of spectra measured without bias is better than that with 100V bias. The consistency of the self-absorption corrected FY spectra and TEY spectra are within 10% for the three samples.