Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL...Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.展开更多
Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of th...Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.展开更多
Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousa...Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.展开更多
X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.T...X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.This paper briefly reviews the recent advances in the in-situ observation of aluminium alloys,magnesium alloys and nickel-based superalloys during solidification using laboratory XCT and synchrotron X-ray sources.The focus is on the growth kinetics of dendrites,porosity and secondary phases.In addition,in-situ characterization during the loading and corrosion process is also discussed.展开更多
BACKGROUND Neoadjuvant chemotherapy(NAC)has become the standard care for advanced adenocarcinoma of esophagogastric junction(AEG),although a part of the patients cannot benefit from NAC.There are no models based on ba...BACKGROUND Neoadjuvant chemotherapy(NAC)has become the standard care for advanced adenocarcinoma of esophagogastric junction(AEG),although a part of the patients cannot benefit from NAC.There are no models based on baseline computed tomography(CT)to predict response of Siewert type II or III AEG to NAC with docetaxel,oxaliplatin and S-1(DOS).AIM To develop a CT-based nomogram to predict response of Siewert type II/III AEG to NAC with DOS.METHODS One hundred and twenty-eight consecutive patients with confirmed Siewert type II/III AEG underwent CT before and after three cycles of NAC with DOS,and were randomly and consecutively assigned to the training cohort(TC)(n=94)and the validation cohort(VC)(n=34).Therapeutic effect was assessed by disease-control rate and progressive disease according to the Response Evaluation Criteria in Solid Tumors(version 1.1)criteria.Possible prognostic factors associated with responses after DOS treatment including Siewert classification,gross tumor volume(GTV),and cT and cN stages were evaluated using pretherapeutic CT data in addition to sex and age.Univariate and multivariate analyses of CT and clinical features in the TC were performed to determine independent factors associated with response to DOS.A nomogram was established based on independent factors to predict the response.The predictive performance of the nomogram was evaluated by Concordance index(C-index),calibration and receiver operating characteristics curve in the TC and VC.RESULTS Univariate analysis showed that Siewert type(52/55 vs 29/39,P=0.005),pretherapeutic cT stage(57/62 vs 24/32,P=0.028),GTV(47.3±27.4 vs 73.2±54.3,P=0.040)were significantly associated with response to DOS in the TC.Multivariate analysis of the TC also showed that the pretherapeutic cT stage,GTV and Siewert type were independent predictive factors related to response to DOS(odds ratio=4.631,1.027 and 7.639,respectively;all P<0.05).The nomogram developed with these independent factors showed an excellent performance to predict response to DOS in the TC and VC(C-index:0.838 and 0.824),with area under the receiver operating characteristic curve of 0.838 and 0.824,respectively.The calibration curves showed that the practical and predicted response to DOS effectively coincided.CONCLUSION A novel nomogram developed with pretherapeutic cT stage,GTV and Siewert type predicted the response of Siewert type II/III AEG to NAC with DOS.展开更多
Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method...Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was g...BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was greater than 25%of the joint.Currently,computed tomography(CT)has been gaining traction in the preoperative evaluation of ankle fractures.AIM To elucidate the similarity in dimensions and to correlate PM size in X-ray images with the articular surface of the affected tibial plafond in the axial view on CT(AXCT)of a PM fracture.METHODS Eighty-one patients(mean age:39.4±13.5 years)were evaluated(54.3%were male).Two independent examiners measured PM size in profile X-ray images(PMXR)and sagittal CT(SAGCT)slices.The correlation of the measurements between the examiners and the difference in the PM fragment sizes between the two images were compared.Next,the PM size in PMXR was compared with the surface of the tibial plafond involved in the fracture in AXCT according to the Haraguchi classification.RESULTS The correlation rates between the examiners were 0.93 and 0.94 for PMXR and SAGCT,respectively(P<0.001).Fragments were 2.12%larger in SAGCT than in PMXR(P=0.018).In PMXR,there were 56 cases<25%and 25 cases≥25%.When PMXR was<25%,AXCT corresponded to 10.13%of the tibial plafond.When PMXR was≥25%,AXCT was 24.52%(P<0.001).According to the Haraguchi classification,fracture types I and II had similar PMXR measurements that were greater than those of type III.When analyzing AXCT,a significant difference was found between the three types,with II>I>III(P<0.001).CONCLUSION PM fractures show different sizes using X-ray or CT images.CT showed a larger PM in the sagittal plane and allowed the visualization of the real dimensions of the tibial plafond surface.展开更多
Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a...Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.展开更多
Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magneto...Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.展开更多
BACKGROUND Gastrointestinal stromal tumors(GIST)are prevalent neoplasm originating from the gastrointestinal mesenchyme.Approximately 50%of GIST patients experience tumor recurrence within 5 years.Thus,there is a pres...BACKGROUND Gastrointestinal stromal tumors(GIST)are prevalent neoplasm originating from the gastrointestinal mesenchyme.Approximately 50%of GIST patients experience tumor recurrence within 5 years.Thus,there is a pressing need to accurately evaluate risk stratification preoperatively.AIM To assess the application of a deep learning model(DLM)combined with computed tomography features for predicting risk stratification of GISTs.METHODS Preoperative contrast-enhanced computed tomography(CECT)images of 551 GIST patients were retrospectively analyzed.All image features were independently analyzed by two radiologists.Quantitative parameters were statistically analyzed to identify significant predictors of high-risk malignancy.Patients were randomly assigned to the training(n=386)and validation cohorts(n=165).A DLM and a combined DLM were established for predicting the GIST risk stratification using convolutional neural network and subsequently evaluated in the validation cohort.RESULTS Among the analyzed CECT image features,tumor size,ulceration,and enlarged feeding vessels were identified as significant risk predictors(P<0.05).In DLM,the overall area under the receiver operating characteristic curve(AUROC)was 0.88,with the accuracy(ACC)and AUROCs for each stratification being 87%and 0.96 for low-risk,79%and 0.74 for intermediate-risk,and 84%and 0.90 for high-risk,respectively.The overall ACC and AUROC were 84%and 0.94 in the combined model.The ACC and AUROCs for each risk stratification were 92%and 0.97 for low-risk,87%and 0.83 for intermediate-risk,and 90%and 0.96 for high-risk,respectively.Differences in AUROCs for each risk stratification between the two models were significant(P<0.05).CONCLUSION A combined DLM with satisfactory performance for preoperatively predicting GIST stratifications was developed using routine computed tomography data,demonstrating superiority compared to DLM.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,th...BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267 and 41877260)the Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13010201).
文摘Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.
基金supported by the National Natural Science Foundation of China(Nos.12375157,12027902,and 11905011)。
文摘Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.
文摘Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.
文摘X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.This paper briefly reviews the recent advances in the in-situ observation of aluminium alloys,magnesium alloys and nickel-based superalloys during solidification using laboratory XCT and synchrotron X-ray sources.The focus is on the growth kinetics of dendrites,porosity and secondary phases.In addition,in-situ characterization during the loading and corrosion process is also discussed.
文摘BACKGROUND Neoadjuvant chemotherapy(NAC)has become the standard care for advanced adenocarcinoma of esophagogastric junction(AEG),although a part of the patients cannot benefit from NAC.There are no models based on baseline computed tomography(CT)to predict response of Siewert type II or III AEG to NAC with docetaxel,oxaliplatin and S-1(DOS).AIM To develop a CT-based nomogram to predict response of Siewert type II/III AEG to NAC with DOS.METHODS One hundred and twenty-eight consecutive patients with confirmed Siewert type II/III AEG underwent CT before and after three cycles of NAC with DOS,and were randomly and consecutively assigned to the training cohort(TC)(n=94)and the validation cohort(VC)(n=34).Therapeutic effect was assessed by disease-control rate and progressive disease according to the Response Evaluation Criteria in Solid Tumors(version 1.1)criteria.Possible prognostic factors associated with responses after DOS treatment including Siewert classification,gross tumor volume(GTV),and cT and cN stages were evaluated using pretherapeutic CT data in addition to sex and age.Univariate and multivariate analyses of CT and clinical features in the TC were performed to determine independent factors associated with response to DOS.A nomogram was established based on independent factors to predict the response.The predictive performance of the nomogram was evaluated by Concordance index(C-index),calibration and receiver operating characteristics curve in the TC and VC.RESULTS Univariate analysis showed that Siewert type(52/55 vs 29/39,P=0.005),pretherapeutic cT stage(57/62 vs 24/32,P=0.028),GTV(47.3±27.4 vs 73.2±54.3,P=0.040)were significantly associated with response to DOS in the TC.Multivariate analysis of the TC also showed that the pretherapeutic cT stage,GTV and Siewert type were independent predictive factors related to response to DOS(odds ratio=4.631,1.027 and 7.639,respectively;all P<0.05).The nomogram developed with these independent factors showed an excellent performance to predict response to DOS in the TC and VC(C-index:0.838 and 0.824),with area under the receiver operating characteristic curve of 0.838 and 0.824,respectively.The calibration curves showed that the practical and predicted response to DOS effectively coincided.CONCLUSION A novel nomogram developed with pretherapeutic cT stage,GTV and Siewert type predicted the response of Siewert type II/III AEG to NAC with DOS.
基金the China Natural Science Fund(No.52171253)the Natural Science Foundation of Sichuan(No.2022NSFSCO949).
文摘Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
文摘BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was greater than 25%of the joint.Currently,computed tomography(CT)has been gaining traction in the preoperative evaluation of ankle fractures.AIM To elucidate the similarity in dimensions and to correlate PM size in X-ray images with the articular surface of the affected tibial plafond in the axial view on CT(AXCT)of a PM fracture.METHODS Eighty-one patients(mean age:39.4±13.5 years)were evaluated(54.3%were male).Two independent examiners measured PM size in profile X-ray images(PMXR)and sagittal CT(SAGCT)slices.The correlation of the measurements between the examiners and the difference in the PM fragment sizes between the two images were compared.Next,the PM size in PMXR was compared with the surface of the tibial plafond involved in the fracture in AXCT according to the Haraguchi classification.RESULTS The correlation rates between the examiners were 0.93 and 0.94 for PMXR and SAGCT,respectively(P<0.001).Fragments were 2.12%larger in SAGCT than in PMXR(P=0.018).In PMXR,there were 56 cases<25%and 25 cases≥25%.When PMXR was<25%,AXCT corresponded to 10.13%of the tibial plafond.When PMXR was≥25%,AXCT was 24.52%(P<0.001).According to the Haraguchi classification,fracture types I and II had similar PMXR measurements that were greater than those of type III.When analyzing AXCT,a significant difference was found between the three types,with II>I>III(P<0.001).CONCLUSION PM fractures show different sizes using X-ray or CT images.CT showed a larger PM in the sagittal plane and allowed the visualization of the real dimensions of the tibial plafond surface.
文摘Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.
基金supported by NASA Goddard Space Flight Center through Cooperative Agreement 80NSSC21M0180 to Catholic UniversityPartnership for Heliophysics and Space Environment Research(PHaSER)+2 种基金the NASA Heliophysics United States Participating Investigator Program under Grant WBS516741.01.24.01.03(DS)support from the NASA grants 80NSSC19K0844,80NSSC20K1670,and 80MSFC20C0019the NASA GSFC internal fundings(HIF,ISFM,and IRAD)。
文摘Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.
基金Supported by The Chinese National Key Research and Development Project,No.2021YFC2500400 and No.2021YFC2500402Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-009A.
文摘BACKGROUND Gastrointestinal stromal tumors(GIST)are prevalent neoplasm originating from the gastrointestinal mesenchyme.Approximately 50%of GIST patients experience tumor recurrence within 5 years.Thus,there is a pressing need to accurately evaluate risk stratification preoperatively.AIM To assess the application of a deep learning model(DLM)combined with computed tomography features for predicting risk stratification of GISTs.METHODS Preoperative contrast-enhanced computed tomography(CECT)images of 551 GIST patients were retrospectively analyzed.All image features were independently analyzed by two radiologists.Quantitative parameters were statistically analyzed to identify significant predictors of high-risk malignancy.Patients were randomly assigned to the training(n=386)and validation cohorts(n=165).A DLM and a combined DLM were established for predicting the GIST risk stratification using convolutional neural network and subsequently evaluated in the validation cohort.RESULTS Among the analyzed CECT image features,tumor size,ulceration,and enlarged feeding vessels were identified as significant risk predictors(P<0.05).In DLM,the overall area under the receiver operating characteristic curve(AUROC)was 0.88,with the accuracy(ACC)and AUROCs for each stratification being 87%and 0.96 for low-risk,79%and 0.74 for intermediate-risk,and 84%and 0.90 for high-risk,respectively.The overall ACC and AUROC were 84%and 0.94 in the combined model.The ACC and AUROCs for each risk stratification were 92%and 0.97 for low-risk,87%and 0.83 for intermediate-risk,and 90%and 0.96 for high-risk,respectively.Differences in AUROCs for each risk stratification between the two models were significant(P<0.05).CONCLUSION A combined DLM with satisfactory performance for preoperatively predicting GIST stratifications was developed using routine computed tomography data,demonstrating superiority compared to DLM.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金Supported by Health Commission of Shanxi Province,No.2021XM39.
文摘BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.