期刊文献+
共找到19,814篇文章
< 1 2 250 >
每页显示 20 50 100
Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures
1
作者 Fayez Alfayez 《Computers, Materials & Continua》 SCIE EI 2024年第4期1539-1560,共22页
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu... This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms. 展开更多
关键词 Feature reduction image classification x-ray images
下载PDF
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
2
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft x-ray imaging micropore optics large area CCD
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
3
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft x-ray imager characterisation SMILE
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:1
4
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft x-ray imager MAGNETOPAUSE image restoration
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
5
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft x-ray imager
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
6
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
Learning Discriminatory Information for Object Detection on Urine Sediment Image
7
作者 Sixian Chan Binghui Wu +2 位作者 Guodao Zhang Yuan Yao Hongqiang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期411-428,共18页
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,... In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5. 展开更多
关键词 Object detection attention mechanism medical image urine sediment
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
8
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images
9
作者 Ming-jun Hou Hao Dong +7 位作者 Xiao-yuan Ji Wen-bing Zou Xiang-sheng Xia Meng Li Ya-jun Yin Bao-hui Li Qiang Chen Jian-xin Zhou 《China Foundry》 SCIE EI CAS CSCD 2024年第3期239-247,共9页
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H... The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks. 展开更多
关键词 light alloy casting flaw detection image generator DISCRIMINATOR comprehensive evaluation index
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer
10
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
11
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
下载PDF
Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images
12
作者 Shu Wang Dawei Zeng +3 位作者 Yixuan Xu Gonghan Yang Feng Huang Liqiong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期269-281,共13页
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,... Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield. 展开更多
关键词 Camouflaged people detection Snapshot multispectral imaging Optimal band selection MS-YOLO Complex remote sensing scenes
下载PDF
DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection
13
作者 Pengchao Li Fang Xu +3 位作者 Jintao Wang Haibing Guo Mingmin Liu Zhenjun Du 《Computers, Materials & Continua》 SCIE EI 2024年第2期1755-1771,共17页
We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance... We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations. 展开更多
关键词 Weld image detection deep learning semantic segmentation depth map geometric feature extraction
下载PDF
Standard-definition White-light,High-definition White-light versus Narrow-band Imaging Endoscopy for Detecting Colorectal Adenomas:A Multicenter Randomized Controlled Trial
14
作者 Chang-wei DUAN Hui-hong ZHAI +10 位作者 Hui XIE Xian-zong MA Dong-liang YU Lang YANG Xin WANG Yu-fen TANG Jie ZHANG Hui SU Jian-qiu SHENG Jun-feng XU Peng JIN 《Current Medical Science》 SCIE CAS 2024年第3期554-560,共7页
Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore... Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies. 展开更多
关键词 standard-definition white-light endoscopy high-definition white-light endoscopy narrow-band imaging colonoscopy colorectal cancer screening adenoma detection rate
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
15
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
Machine learning algorithm partially reconfigured on FPGA for an image edge detection system
16
作者 Gracieth Cavalcanti Batista Johnny Oberg +3 位作者 Osamu Saotome Haroldo F.de Campos Velho Elcio Hideiti Shiguemori Ingemar Soderquist 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期48-68,共21页
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for... Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time. 展开更多
关键词 Dynamic partial reconfiguration(DPR) Field programmable gate array(FPGA)implementation image edge detection Support vector regression(SVR) Unmanned aerial vehicle(UAV) pose estimation
下载PDF
Deep Attention Network for Pneumonia Detection Using Chest X-Ray Images
17
作者 Sukhendra Singh Sur Singh Rawat +5 位作者 Manoj Gupta B.K.Tripathi Faisal Alanzi Arnab Majumdar Pattaraporn Khuwuthyakorn Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2023年第1期1673-1691,共19页
In computer vision,object recognition and image categorization have proven to be difficult challenges.They have,nevertheless,generated responses to a wide range of difficult issues from a variety of fields.Convolution... In computer vision,object recognition and image categorization have proven to be difficult challenges.They have,nevertheless,generated responses to a wide range of difficult issues from a variety of fields.Convolution Neural Networks(CNNs)have recently been identified as the most widely proposed deep learning(DL)algorithms in the literature.CNNs have unquestionably delivered cutting-edge achievements,particularly in the areas of image classification,speech recognition,and video processing.However,it has been noticed that the CNN-training assignment demands a large amount of data,which is in low supply,especially in the medical industry,and as a result,the training process takes longer.In this paper,we describe an attentionaware CNN architecture for classifying chest X-ray images to diagnose Pneumonia in order to address the aforementioned difficulties.AttentionModules provide attention-aware properties to the Attention Network.The attentionaware features of various modules alter as the layers become deeper.Using a bottom-up top-down feedforward structure,the feedforward and feedback attention processes are integrated into a single feedforward process inside each attention module.In the present work,a deep neural network(DNN)is combined with an attention mechanism to test the prediction of Pneumonia disease using chest X-ray pictures.To produce attention-aware features,the suggested networkwas built by merging channel and spatial attentionmodules in DNN architecture.With this network,we worked on a publicly available Kaggle chest X-ray dataset.Extensive testing was carried out to validate the suggested model.In the experimental results,we attained an accuracy of 95.47%and an F-score of 0.92,indicating that the suggested model outperformed against the baseline models. 展开更多
关键词 Attention network image classification object detection residual networks deep neural network
下载PDF
Application of Dual-Energy X-Ray Image Detection of Dangerous Goods Based on YOLOv7
18
作者 Baosheng Liu Fei Wang +1 位作者 Ming Gao Lei Zhao 《Journal of Computer and Communications》 2023年第7期208-225,共18页
X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out wo... X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection. 展开更多
关键词 x-ray Dangerous Goods detection High and Low Energy image Fusion ACCURACY Real-Time detection
下载PDF
Detecting Double JPEG Compressed Color Images via an Improved Approach
19
作者 Xiaojie Zhao Xiankui Meng +2 位作者 Ruyong Ren Shaozhang Niu Zhenguang Gao 《Computers, Materials & Continua》 SCIE EI 2023年第4期1765-1781,共17页
Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompress... Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low. 展开更多
关键词 Color image forensics double JPEG compression detection the same quantization matrix CNN
下载PDF
COVID-19 Detection from Chest X-Ray Images Using Convolutional Neural Network Approach
20
作者 Md. Harun Or Rashid Muzakkir Hossain Minhaz +2 位作者 Ananya Sarker Must. Asma Yasmin Md. Golam An Nihal 《Journal of Computer and Communications》 2023年第5期29-41,共13页
COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can rang... COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can range from mild to severe, and timely diagnosis is crucial for effective treatment. Chest X-Ray imaging is one diagnostic tool used for COVID-19, and a Convolutional Neural Network (CNN) is a popular technique for image classification. In this study, we proposed a CNN-based approach for detecting COVID-19 in chest X-Ray images. The model was trained on a dataset containing both COVID-19 positive and negative cases and evaluated on a separate test dataset to measure its accuracy. Our results indicated that the CNN approach could accurately detect COVID-19 in chest X-Ray images, with an overall accuracy of 97%. This approach could potentially serve as an early diagnostic tool to reduce the spread of the virus. 展开更多
关键词 COVID-19 Chest x-ray images CNN VIRUS ACCURACY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部