We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope p...We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.展开更多
Simulation approach includes such processes as photon emissions from X-ray tube with a spectral distribution, total reflection on the sample support, photoelectric effect in thin layer sample, as well as characteristi...Simulation approach includes such processes as photon emissions from X-ray tube with a spectral distribution, total reflection on the sample support, photoelectric effect in thin layer sample, as well as characteristic line absorption and detection. The calculation results are in agreement with experimental ones.展开更多
X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. ...X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. A new X-ray laboratory has been built in Frascati (ENEA) to develop diagnostics for nuclear fusion experiments and study applications of these X-ray techniques in other domains, like new material science, non destructive tests and so on. An in-house developed selfconsistent calibration procedure is described that permits the absolute calibration of sources (X-ray emitted fluxes) and detectors (detection efficiencies) as function of the X-ray photon energy, in the range 2 - 120 keV. The calibration procedure involves the use of an in-house developed code that also predicts the spectral response of any detector in any experimental condition that can be setup in the laboratory. The procedure has been then applied for the calibration and characterisation of gas and solid state imaging detectors, such as Medipix-2, GEM gas detector, CCD camera, Cd-Te C-MOS imager, demonstrating the versatility of the method developed here.展开更多
INTRODUCTIONThe studies on the quantitative distribution of the conventional elements and their phases in the sediments of the Changjiang Estuary are of great importance to the understanding of the chemical processes ...INTRODUCTIONThe studies on the quantitative distribution of the conventional elements and their phases in the sediments of the Changjiang Estuary are of great importance to the understanding of the chemical processes of ion exchange, absorption, desorption and flocculation in the estuary.展开更多
A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rot...A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.展开更多
X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon countin...X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.展开更多
Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor pene...Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys.展开更多
In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate ...In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.展开更多
Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detect...Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.展开更多
Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in therm...Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.展开更多
With the advancement in X-ray astronomical detection technology,various celestial polarization detection projects have been initiated.To meet the calibration requirements of polarimeters on the ground,a polarized X-ra...With the advancement in X-ray astronomical detection technology,various celestial polarization detection projects have been initiated.To meet the calibration requirements of polarimeters on the ground,a polarized X-ray radiation facility was designed for this study.The design was based on the principle that X-rays incident at 45°on a crystal produce polarized X-rays,and a second crystal was used to measure the polarization of the X-rays produced by the facility after rotation.The effects of different diaphragm sizes on the degree of polarization were compared,and the facility produced X-rays with polarization degrees of up to 99.55±0.96%using LiF200 and LiF220 crystals.This result revealed that the polarization of incident X-rays is one of the factors affecting the diffraction efficiency of crystals.The replacement of different crystals can satisfy the calibration requirements of polarized X-ray detectors with more energy points in the energy range(4-10)keV.In the future,the facility should be placed in a vacuum environment to meet the calibration requirements at lower energies.展开更多
A quantitative analysis method of molybdenum in FeMo alloys by X-ray spectrometry using borate fusion technique was compared with that with pressed pellet. The complete pre-oxidation of FeMo alloys for the preparation...A quantitative analysis method of molybdenum in FeMo alloys by X-ray spectrometry using borate fusion technique was compared with that with pressed pellet. The complete pre-oxidation of FeMo alloys for the preparation of homogeneous fused discs was achieved by employing an automated fusion machine equipped with specially designed O2-blowing nozzles, which used lithium tetra-borate as flux with the addition of lithium nitrate (LiNO3) as oxidizer. The calibration curves of Mo and Fe were used in the quantitative analysis of standard materials and unknown plant samples with satisfactory accuracy and precision, utilizing the corrections of the matrix effects and line overlap. It was confirmed that the newly proposed method of preparing fused glass discs of FeMo alloys can replace the conventional wet chemical analyses requiring the labor intensive and time consuming procedure.展开更多
Coupling equations used to calculate the chemical composition of substances by X-ray fluorescence analysis can be classified as empirical, theoretical or semi-empirical based on the method for determining the coeffici...Coupling equations used to calculate the chemical composition of substances by X-ray fluorescence analysis can be classified as empirical, theoretical or semi-empirical based on the method for determining the coefficients of the calibration function. The advantages and disadvantages of each class of equations are discussed. Recommendations for the selecting the optimum conditions for determining empirical correction coefficients and their control during analysis are provided.展开更多
Two non-destructive analytical techniques (gamma spectrometer and X-ray diffractometer) were employed in the analysis of bauxite and rutile ore and their vicinity soil and control sourced within the Kanam and Wase min...Two non-destructive analytical techniques (gamma spectrometer and X-ray diffractometer) were employed in the analysis of bauxite and rutile ore and their vicinity soil and control sourced within the Kanam and Wase mineral exploration sites. The activity concentrations of natural radionuclides <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in the soil samples received from bauxite and rutile mineral mining vicinities revealed high concentrations of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K compared to the control soil samples sourced 500 m away from the mineral exploration vicinities. Radiological detriments RLI, AUI, Hin and Hex unveiled values exceeding the radiation standard concentration (>1) for soil. X-ray diffraction characterization of bauxite ore revealed the interlocking minerals of Bauxite (18)%, Albite (11)%, Garnet (15)%, Illite (6)% and Muscovite (43)% in various proportions obtained within the 2θ range (9.18 to 64.4) and a peak value (intensity, cps) of 3400. Pure bauxite percentage in the ore meets metallurgical grade (15 - 25)%. X-ray diffraction of rutile ore revealed the minerals of rutile (40)%, quartz (21.4)%, ilmenite (27)% and garnet (11.8)% found within the 2θ range (27.5 to 35.6) and a peak value intensity of 31.1 - 100.0 cps also meeting the metallurgical grade of 15% - 25%. The major environmental concern associated with the mineral-sands industry is the radiation hazards, pollution of ground-water sources from heavy metals, mineral transport with heavy equipment’s, dredging operations in fragile coastal area and clearing of vegetation.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. U1731242 and 61621001)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA15010400 and XDA04060605)
文摘We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.
文摘Simulation approach includes such processes as photon emissions from X-ray tube with a spectral distribution, total reflection on the sample support, photoelectric effect in thin layer sample, as well as characteristic line absorption and detection. The calculation results are in agreement with experimental ones.
文摘X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. A new X-ray laboratory has been built in Frascati (ENEA) to develop diagnostics for nuclear fusion experiments and study applications of these X-ray techniques in other domains, like new material science, non destructive tests and so on. An in-house developed selfconsistent calibration procedure is described that permits the absolute calibration of sources (X-ray emitted fluxes) and detectors (detection efficiencies) as function of the X-ray photon energy, in the range 2 - 120 keV. The calibration procedure involves the use of an in-house developed code that also predicts the spectral response of any detector in any experimental condition that can be setup in the laboratory. The procedure has been then applied for the calibration and characterisation of gas and solid state imaging detectors, such as Medipix-2, GEM gas detector, CCD camera, Cd-Te C-MOS imager, demonstrating the versatility of the method developed here.
基金The project was supported by the National Natural Science Foundation of China.
文摘INTRODUCTIONThe studies on the quantitative distribution of the conventional elements and their phases in the sediments of the Changjiang Estuary are of great importance to the understanding of the chemical processes of ion exchange, absorption, desorption and flocculation in the estuary.
基金supported by National Natural Science Foundation of China(Nos.11175208,11305212 and 11405212)the National Magnetic Confinement Fusion Science Program of China(No.2013GB112004)JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.
基金Project supported by the Science Foundation of China Academy of Engineering Physics(Grant Nos.2013A0103003 and 2012B0102008)the National High-Tech Inertial Confinement Fusion Committee of China
文摘X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0403801,2017YFA0206004,2018YFC1200204)the National Natural Science Foundation of China(NSFC)(Nos.81430087,11775297,U1932205).
文摘Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys.
文摘In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.
基金upported by the National Key R&D Plan of China(2016YFF0200802)Establishment of a standard device for air kerma in mammography X-rays(ANL1902)。
文摘Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.
基金supported by National Energy R&D Center of Petroleum Refining Technology of China(RIPP,SINOPEC)National Key Research and Development Program of China(No.2017YFA0304203)+5 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Industrial Application Innovation Project(No.627010407)Scientific and Technological Innovation Project of Shanxi Gemeng US-China Clean Energy R&D Center Co.,Ltd111 Project(D18001)Fund for Shanxi‘1331KSC’。
文摘Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.
基金supported by the National Natural Science Foundation of China(No.12205289).
文摘With the advancement in X-ray astronomical detection technology,various celestial polarization detection projects have been initiated.To meet the calibration requirements of polarimeters on the ground,a polarized X-ray radiation facility was designed for this study.The design was based on the principle that X-rays incident at 45°on a crystal produce polarized X-rays,and a second crystal was used to measure the polarization of the X-rays produced by the facility after rotation.The effects of different diaphragm sizes on the degree of polarization were compared,and the facility produced X-rays with polarization degrees of up to 99.55±0.96%using LiF200 and LiF220 crystals.This result revealed that the polarization of incident X-rays is one of the factors affecting the diffraction efficiency of crystals.The replacement of different crystals can satisfy the calibration requirements of polarized X-ray detectors with more energy points in the energy range(4-10)keV.In the future,the facility should be placed in a vacuum environment to meet the calibration requirements at lower energies.
文摘A quantitative analysis method of molybdenum in FeMo alloys by X-ray spectrometry using borate fusion technique was compared with that with pressed pellet. The complete pre-oxidation of FeMo alloys for the preparation of homogeneous fused discs was achieved by employing an automated fusion machine equipped with specially designed O2-blowing nozzles, which used lithium tetra-borate as flux with the addition of lithium nitrate (LiNO3) as oxidizer. The calibration curves of Mo and Fe were used in the quantitative analysis of standard materials and unknown plant samples with satisfactory accuracy and precision, utilizing the corrections of the matrix effects and line overlap. It was confirmed that the newly proposed method of preparing fused glass discs of FeMo alloys can replace the conventional wet chemical analyses requiring the labor intensive and time consuming procedure.
文摘Coupling equations used to calculate the chemical composition of substances by X-ray fluorescence analysis can be classified as empirical, theoretical or semi-empirical based on the method for determining the coefficients of the calibration function. The advantages and disadvantages of each class of equations are discussed. Recommendations for the selecting the optimum conditions for determining empirical correction coefficients and their control during analysis are provided.
文摘Two non-destructive analytical techniques (gamma spectrometer and X-ray diffractometer) were employed in the analysis of bauxite and rutile ore and their vicinity soil and control sourced within the Kanam and Wase mineral exploration sites. The activity concentrations of natural radionuclides <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in the soil samples received from bauxite and rutile mineral mining vicinities revealed high concentrations of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K compared to the control soil samples sourced 500 m away from the mineral exploration vicinities. Radiological detriments RLI, AUI, Hin and Hex unveiled values exceeding the radiation standard concentration (>1) for soil. X-ray diffraction characterization of bauxite ore revealed the interlocking minerals of Bauxite (18)%, Albite (11)%, Garnet (15)%, Illite (6)% and Muscovite (43)% in various proportions obtained within the 2θ range (9.18 to 64.4) and a peak value (intensity, cps) of 3400. Pure bauxite percentage in the ore meets metallurgical grade (15 - 25)%. X-ray diffraction of rutile ore revealed the minerals of rutile (40)%, quartz (21.4)%, ilmenite (27)% and garnet (11.8)% found within the 2θ range (27.5 to 35.6) and a peak value intensity of 31.1 - 100.0 cps also meeting the metallurgical grade of 15% - 25%. The major environmental concern associated with the mineral-sands industry is the radiation hazards, pollution of ground-water sources from heavy metals, mineral transport with heavy equipment’s, dredging operations in fragile coastal area and clearing of vegetation.