Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu...This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and s...An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.展开更多
The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and s...The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and silicon photodetectors.The weight and thickness of X-ray detectors can be reduced by replacing the silicon layer with an organic photodetectors.This study presents a novel bithienopyrroledione-based polymer donor that exhibits excellent photodetection properties even in a thick photoactive layer(~700 nm),owing to the symmetric backbone and highly soluble molecular structure of bithienopyrroledione.The ability of bithienopyrroledione-based polymer donor to strongly suppress the dark current density(Jd~10−10 A cm^(−2))at a negative bias(−2.0 V)while maintaining high responsivity(R=0.29 A W−1)even at a thickness of 700 nm results in a maximum shot-noise-limited specific detectivity of D_(sh)^(*)=2.18×10^(13)Jones in the organic photodetectors.Printed organic photodetectors are developed by slot-die coating for use in X-ray detectors,which exhibit D_(sh)^(*)=2.73×10^(12)Jones with clear rising(0.26 s)and falling(0.29 s)response times upon X-ray irradiation.Detection reliability is also proven by linear response of the X-ray detector,and the X-ray detection limit is 3 mA.展开更多
Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The la...Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists.展开更多
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a...Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.展开更多
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu...The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.展开更多
X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image...X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.展开更多
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detec...Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detect fractures can reduce the workload and misdiagnosis of fractures and also improve the fracture detection speed.However,there are still some problems in sternum fracture detection,such as the low detection rate of small and occult fractures.In this work,the authors have constructed a dataset with 1227 labelled X-ray images for sternum fracture detection.The authors designed a fully automatic fracture detection model based on a deep convolution neural network(CNN).The authors used cascade R-CNN,attention mechanism,and atrous convolution to optimise the detection of small fractures in a large X-ray image with big local variations.The authors compared the detection results of YOLOv5 model,cascade R-CNN and other state-of-the-art models.The authors found that the convolution neural network based on cascade and attention mechanism models has a better detection effect and arrives at an mAP of 0.71,which is much better than using the YOLOv5 model(mAP=0.44)and cascade R-CNN(mAP=0.55).展开更多
Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elasti...Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.展开更多
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)an...The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection.展开更多
Chronological age estimation using panoramic dental X-ray images is an essential task in forensic sciences.Various statistical approaches have proposed by considering the teeth and mandible.However,building automated ...Chronological age estimation using panoramic dental X-ray images is an essential task in forensic sciences.Various statistical approaches have proposed by considering the teeth and mandible.However,building automated dental age estimation based on machine learning techniques needs more research efforts.In this paper,an automated dental age estimation is proposed using transfer learning.In the proposed approach,features are extracted using two deep neural networks namely,AlexNet and ResNet.Several classifiers are proposed to perform the classification task including decision tree,k-nearest neighbor,linear discriminant,and support vector machine.The proposed approach is evaluated using a number of suitable performance metrics using a dataset that contains 1429 dental X-ray images.The obtained results show that the proposed approach has a promising performance.展开更多
A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In thi...A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In this paper, the valid informa-tion region is selected by the grey level interval, which is computed by the optimization of image quality evaluation model. The model is based on the histogram equalization and the grey level interval. Then, every valid region of images at different voltages is extracted and they are fused according their grey level transformation function. The fusion image contains completed struc-ture information of the component. The fusion experiment of a cylinder head shows the effectiveness of the presented method.展开更多
In early December 2019,the city of Wuhan,China,reported an outbreak of coronavirus disease(COVID-19),caused by a novel severe acute respiratory syndrome coronavirus-2(SARS-CoV-2).On January 30,2020,the World Health Or...In early December 2019,the city of Wuhan,China,reported an outbreak of coronavirus disease(COVID-19),caused by a novel severe acute respiratory syndrome coronavirus-2(SARS-CoV-2).On January 30,2020,the World Health Organization(WHO)declared the outbreak a global pandemic crisis.In the face of the COVID-19 pandemic,the most important step has been the effective diagnosis and monitoring of infected patients.Identifying COVID-19 using Machine Learning(ML)technologies can help the health care unit through assistive diagnostic suggestions,which can reduce the health unit's burden to a certain extent.This paper investigates the possibilities of ML techniques in identifying/detecting COVID-19 patients including both conventional and exploring from chest X-ray images the effect of viral infection.This approach includes preprocessing,feature extraction,and classification.However,the features are extracted using the Histogram of Oriented(HOG)and Local Binary Pattern(LBP)feature descriptors.Furthermore,for the extracted features classification,six ML models of Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)is used.Experimental results show that the diagnostic accuracy of random forest classifier(RFC)on extracted HOG plusLBP features is as high as 94%followed by SVM at 93%.The sensitivity of the K-nearest neighbour model has reached an accuracy of 88%.Overall,the predicted approach has shown higher classification accuracy and effective diagnostic performance.It is a highly useful tool for clinical practitioners and radiologists to help them in diagnosing and tracking the cases of COVID-19.展开更多
This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction...This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge.In this study,CNN architectures such as VGG-16,VGG-19,RestNet50,RestNet18 are compared,and an optimized model for feature extraction in X-ray images from various domains invol-ving several classes is proposed.An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19(Negative or Positive).Then,2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models.Among those,the optimized model architecture classifier technique achieves higher accuracy(0.97)than four other models,specifically VGG-16,VGG-19,RestNet18,and RestNet50(0.96,0.72,0.91,and 0.93,respectively).Therefore,this study will enable radiol-ogists to more efficiently and effectively classify a patient’s coronavirus disease.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金the appreciation to the Deanship of Postgraduate Studies and ScientificResearch atMajmaah University for funding this research work through the Project Number R-2024-922.
文摘This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
基金the Researchers Supporting Project Number(RSP2023 R157),King Saud University,Riyadh,Saudi Arabia.
文摘An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.
基金granted by the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.2422-10)the National Research Foundation(NRF)(NRF-2021R1C1C2007445 and RS-2023-00280495)of Republic of Korea.
文摘The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and silicon photodetectors.The weight and thickness of X-ray detectors can be reduced by replacing the silicon layer with an organic photodetectors.This study presents a novel bithienopyrroledione-based polymer donor that exhibits excellent photodetection properties even in a thick photoactive layer(~700 nm),owing to the symmetric backbone and highly soluble molecular structure of bithienopyrroledione.The ability of bithienopyrroledione-based polymer donor to strongly suppress the dark current density(Jd~10−10 A cm^(−2))at a negative bias(−2.0 V)while maintaining high responsivity(R=0.29 A W−1)even at a thickness of 700 nm results in a maximum shot-noise-limited specific detectivity of D_(sh)^(*)=2.18×10^(13)Jones in the organic photodetectors.Printed organic photodetectors are developed by slot-die coating for use in X-ray detectors,which exhibit D_(sh)^(*)=2.73×10^(12)Jones with clear rising(0.26 s)and falling(0.29 s)response times upon X-ray irradiation.Detection reliability is also proven by linear response of the X-ray detector,and the X-ray detection limit is 3 mA.
基金funded by the Project KC-4.0.14/19-25“Research on Building a Support System for Diagnosis and Prediction Geo-Spatial Epidemiology of Pulmonary Tuberculosis by Chest X-Ray Images in Vietnam”.
文摘Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists.
文摘Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.
文摘The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.
基金National Natural Science Foundation of China(No.61305118)
文摘X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.
基金Science and technology plan project of Xi'an,Grant/Award Number:GXYD17.12Open Fund of Shaanxi Key Laboratory of Network Data Intelligent Processing,Grant/Award Number:XUPT-KLND(201802,201803)Key Research and Development Program of Shaanxi,Grant/Award Number:2019GY-021。
文摘Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detect fractures can reduce the workload and misdiagnosis of fractures and also improve the fracture detection speed.However,there are still some problems in sternum fracture detection,such as the low detection rate of small and occult fractures.In this work,the authors have constructed a dataset with 1227 labelled X-ray images for sternum fracture detection.The authors designed a fully automatic fracture detection model based on a deep convolution neural network(CNN).The authors used cascade R-CNN,attention mechanism,and atrous convolution to optimise the detection of small fractures in a large X-ray image with big local variations.The authors compared the detection results of YOLOv5 model,cascade R-CNN and other state-of-the-art models.The authors found that the convolution neural network based on cascade and attention mechanism models has a better detection effect and arrives at an mAP of 0.71,which is much better than using the YOLOv5 model(mAP=0.44)and cascade R-CNN(mAP=0.55).
基金supported in part by The National Key Research and Development Program of China(2018YFC2001302)the National Natural Science Foundation of China(61976209)+1 种基金CAS International Collaboration Key Project(173211KYSB20190024)Strategic Priority Research Program of CAS(XDB32040000)。
文摘Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.
文摘The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection.
文摘Chronological age estimation using panoramic dental X-ray images is an essential task in forensic sciences.Various statistical approaches have proposed by considering the teeth and mandible.However,building automated dental age estimation based on machine learning techniques needs more research efforts.In this paper,an automated dental age estimation is proposed using transfer learning.In the proposed approach,features are extracted using two deep neural networks namely,AlexNet and ResNet.Several classifiers are proposed to perform the classification task including decision tree,k-nearest neighbor,linear discriminant,and support vector machine.The proposed approach is evaluated using a number of suitable performance metrics using a dataset that contains 1429 dental X-ray images.The obtained results show that the proposed approach has a promising performance.
基金National Natural Science Foundation of China(No.61227003,No.61301259,No.61471325and No.61571404)Natural Science Foundation of Shanxi Province(No.2015021099)
文摘A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In this paper, the valid informa-tion region is selected by the grey level interval, which is computed by the optimization of image quality evaluation model. The model is based on the histogram equalization and the grey level interval. Then, every valid region of images at different voltages is extracted and they are fused according their grey level transformation function. The fusion image contains completed struc-ture information of the component. The fusion experiment of a cylinder head shows the effectiveness of the presented method.
基金supported by the Information Technology Department,College of Computer,Qassim University,6633,Buraidah 51452,Saudi Arabia.
文摘In early December 2019,the city of Wuhan,China,reported an outbreak of coronavirus disease(COVID-19),caused by a novel severe acute respiratory syndrome coronavirus-2(SARS-CoV-2).On January 30,2020,the World Health Organization(WHO)declared the outbreak a global pandemic crisis.In the face of the COVID-19 pandemic,the most important step has been the effective diagnosis and monitoring of infected patients.Identifying COVID-19 using Machine Learning(ML)technologies can help the health care unit through assistive diagnostic suggestions,which can reduce the health unit's burden to a certain extent.This paper investigates the possibilities of ML techniques in identifying/detecting COVID-19 patients including both conventional and exploring from chest X-ray images the effect of viral infection.This approach includes preprocessing,feature extraction,and classification.However,the features are extracted using the Histogram of Oriented(HOG)and Local Binary Pattern(LBP)feature descriptors.Furthermore,for the extracted features classification,six ML models of Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)is used.Experimental results show that the diagnostic accuracy of random forest classifier(RFC)on extracted HOG plusLBP features is as high as 94%followed by SVM at 93%.The sensitivity of the K-nearest neighbour model has reached an accuracy of 88%.Overall,the predicted approach has shown higher classification accuracy and effective diagnostic performance.It is a highly useful tool for clinical practitioners and radiologists to help them in diagnosing and tracking the cases of COVID-19.
文摘This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge.In this study,CNN architectures such as VGG-16,VGG-19,RestNet50,RestNet18 are compared,and an optimized model for feature extraction in X-ray images from various domains invol-ving several classes is proposed.An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19(Negative or Positive).Then,2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models.Among those,the optimized model architecture classifier technique achieves higher accuracy(0.97)than four other models,specifically VGG-16,VGG-19,RestNet18,and RestNet50(0.96,0.72,0.91,and 0.93,respectively).Therefore,this study will enable radiol-ogists to more efficiently and effectively classify a patient’s coronavirus disease.