期刊文献+
共找到335,608篇文章
< 1 2 250 >
每页显示 20 50 100
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
1
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft x-ray imaging micropore optics large area CCD
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
2
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft x-ray imager MAGNETOPAUSE image restoration
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
3
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft x-ray imager
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
4
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft x-ray imager characterisation SMILE
下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
5
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
From text to image:challenges in integrating vision into ChatGPT for medical image interpretation
6
作者 Shunsuke Koga Wei Du 《Neural Regeneration Research》 SCIE CAS 2025年第2期487-488,共2页
Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive te... Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023). 展开更多
关键词 image DIAGNOSIS TEXT
下载PDF
Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures
7
作者 Fayez Alfayez 《Computers, Materials & Continua》 SCIE EI 2024年第4期1539-1560,共22页
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu... This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms. 展开更多
关键词 Feature reduction image classification x-ray images
下载PDF
Estimating the subsolar magnetopause position from soft X-ray images using a low-pass image filter 被引量:1
8
作者 Hyangpyo Kim Hyunju K.Connor +9 位作者 Jaewoong Jung Brian M.Walsh David Sibeck Kip D.Kuntz Frederick S.Porter Catriana K.Paw U Rousseau A.Nutter Ramiz Qudsi Rumi Nakamura Michael Collier 《Earth and Planetary Physics》 EI CSCD 2024年第1期173-183,共11页
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l... The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives. 展开更多
关键词 soft x-ray MAGNETOPAUSE RECONNECTION low-pass filter LEXI SMILE
下载PDF
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
9
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
下载PDF
Pulmonary Edema and Pleural Effusion Detection Using Efficient Net-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images
10
作者 Anas AbuKaraki Tawfi Alrawashdeh +4 位作者 Sumaya Abusaleh Malek Zakarya Alksasbeh Bilal Alqudah Khalid Alemerien Hamzah Alshamaseen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1055-1073,共19页
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f... This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively. 展开更多
关键词 image classification decision support system EfficientNet-V1-B4 AdamW optimizer pulmonary edema pleural effusion chest x-rays
下载PDF
A Hybrid Classification and Identification of Pneumonia Using African Buffalo Optimization and CNN from Chest X-Ray Images
11
作者 Nasser Alalwan Ahmed I.Taloba +2 位作者 Amr Abozeid Ahmed Ibrahim Alzahrani Ali H.Al-Bayatti 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2497-2517,共21页
An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and s... An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively. 展开更多
关键词 African buffalo optimization convolutional neural network PNEUMONIA x-ray
下载PDF
Organic X-Ray Image Sensors Using a Medium Bandgap Polymer Donor with Low Dark Current
12
作者 Jong-Woon Ha Seung Hun Eom +11 位作者 Bo Kyung Cha Seyeong Song Hyeong Ju Eun Jong H.Kim Jong Mok Park BongSoo Kim Byoungwook Park Seo-Jin Ko Sung Cheol Yoon Changjin Lee In Hwan Jung Do-Hoon Hwang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期230-237,共8页
The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and s... The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and silicon photodetectors.The weight and thickness of X-ray detectors can be reduced by replacing the silicon layer with an organic photodetectors.This study presents a novel bithienopyrroledione-based polymer donor that exhibits excellent photodetection properties even in a thick photoactive layer(~700 nm),owing to the symmetric backbone and highly soluble molecular structure of bithienopyrroledione.The ability of bithienopyrroledione-based polymer donor to strongly suppress the dark current density(Jd~10−10 A cm^(−2))at a negative bias(−2.0 V)while maintaining high responsivity(R=0.29 A W−1)even at a thickness of 700 nm results in a maximum shot-noise-limited specific detectivity of D_(sh)^(*)=2.18×10^(13)Jones in the organic photodetectors.Printed organic photodetectors are developed by slot-die coating for use in X-ray detectors,which exhibit D_(sh)^(*)=2.73×10^(12)Jones with clear rising(0.26 s)and falling(0.29 s)response times upon X-ray irradiation.Detection reliability is also proven by linear response of the X-ray detector,and the X-ray detection limit is 3 mA. 展开更多
关键词 low dark current low detection limit organic photodetector printable x-ray
下载PDF
Tuberculosis Diagnosis and Visualization with a Large Vietnamese X-Ray Image Dataset
13
作者 Nguyen Trong Vinh Lam Thanh Hien +2 位作者 Ha Manh Toan Ngo Duc Vinh Do Nang Toan 《Intelligent Automation & Soft Computing》 2024年第2期281-299,共19页
Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The la... Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists. 展开更多
关键词 Tuberculosis classification Vietnamese chest x-ray deep learning
下载PDF
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
14
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 Chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
Transfer Learning Approach to Classify the X-Ray Image that Corresponds to Corona Disease Using ResNet50 Pre-Trained by ChexNet
15
作者 Mahyar Bolhassani 《Journal of Intelligent Learning Systems and Applications》 2024年第2期80-90,共11页
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu... The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model. 展开更多
关键词 x-ray Classification Convolutional Neural Network ResNet Transfer Learning Supervised Learning COVID-19 Chest x-ray
下载PDF
X-ray image distortion correction based on SVR
16
作者 袁泽慧 李世中 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期302-306,共5页
X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image... X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one. 展开更多
关键词 x-ray image distortion correction support vector regression machine
下载PDF
Investigation of prior image constrained compressed sensing-based spectral X-ray CT image reconstruction
17
作者 周正东 余子丽 +1 位作者 张雯雯 管绍林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期420-425,共6页
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres... To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively. 展开更多
关键词 spectral x-ray CT prior image compressed sensing optimization algorithm image reconstruction
下载PDF
Projection registration of X-ray image and CT image
18
作者 张惠 罗立民 +2 位作者 舒华忠 李松毅 Pascal Haigron 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期26-30,共5页
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const... A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation. 展开更多
关键词 image registration calibration matrix image segmentation distance transformation simulated annealing
下载PDF
Medical X-Ray Image Enhancement Based on Kramer's PDE Model
19
作者 Yan-Fei Zhao Qing-Wei Gao +1 位作者 De-Xiang Zhang Yi-Xiang Lu 《Journal of Electronic Science and Technology of China》 2007年第2期187-190,共4页
The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differenti... The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable. 展开更多
关键词 Terms-Enhancement nonlinear partial differential equation (PDE) partial differential equation model x-ray image.
下载PDF
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
20
作者 Mazin Abed Mohammed Karrar Hameed Abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine x-ray images feature transfer learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部