期刊文献+
共找到48,428篇文章
< 1 2 250 >
每页显示 20 50 100
Automated X-ray Defect Inspection on Occluded BGA Balls Using Hybrid Algorithm
1
作者 Ki-Yeol Eom Byungseok Min 《Computers, Materials & Continua》 SCIE EI 2023年第6期6337-6350,共14页
Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects i... Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects in the X-ray inspection efficiently.In particular,in the Ball Grid Array inspection of X-ray images,it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls.In this paper,we present a novel automatic inspection algorithm that segments solder balls,and detects defects fast and efficiently when solder balls are occluded.The proposed algorithm consists of two stages.In the first stage,the defective candidates or defects are determined through the following four steps:(i)image preprocessing such as noise removal,contrast enhancement,binarization,connected component,and morphology,(ii)limiting the inspec-tion area to the ball regions and determining if the ball regions are occluded,(iii)segmenting each ball region into one or more regions with similar gray values,and(iv)determining whether there are defects or defective candidates in the regions using a weighted sum of local threshold on local variance.If there are defective candidates,the determination of defects is finally made in the following stage.In the second stage,defects are detected using the automated inspection technique based on oblique computed tomography.The 3D precision inspection process is divided into four steps:(i)obtaining 360 projection images(one image per degree)rotating the object from 0 to 360 degrees,(ii)reconstructing a 3D image from the 360 projected images,(iii)finding the center slice of gravity for solder balls from the axial slice images in the z-direction,and getting the inspection intervals between the upper bound and the lower bound from the center slice,and(iv)finally determining whether there are defects in the averaged image of solder balls.The proposed hybrid algorithm is robust for segmenting the defects inside occluded solder balls,and improves the performance of solder ball segmentation and defect detection algorithm.Experimental results show an accuracy of more than 97%. 展开更多
关键词 HYBRID voids BGA x-ray inspection DEFECTS
下载PDF
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
2
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Development of track geometry inspection equipment for high-speed comprehensive inspection train in China
3
作者 Yan Wang Shibin Wei +2 位作者 Fei Yang Jiyou Fei Jianfeng Guo 《Railway Sciences》 2024年第6期673-683,共11页
Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometr... Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage. 展开更多
关键词 Track geometry inspection equipment High-speed comprehensive inspection Potential tapping requirements and technological direction High-speed railway
下载PDF
Central environmental protection inspection and carbon emission reduction: A tripartite evolutionary game model from the perspective of carbon neutrality
4
作者 Zhen-Hua Zhang Dan Ling +2 位作者 Qin-Xin Yang Yan-Chao Feng Jing Xiu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2139-2153,共15页
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ... Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy. 展开更多
关键词 Central environmental protection inspection Local government Manufacturing enterprise Tripartite evolutionary game Carbon emission reduction
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
5
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
Calibration of CO and CO2 Monitors Used in Periodic Inspection of Vehicles at Fixed Stations for Environmental Control
6
作者 Adel Bassuoni Shehata Abdulrahman Rashed Al Askar +2 位作者 Najjy Hamad Al Yami Abdullah Suleiman Al Owaysi Sultan K. Alharbi 《Green and Sustainable Chemistry》 2024年第2期29-41,共13页
Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuri... Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuring the quantitative assessment of emissions for informed decisions on environmental treatments. This paper describes a method for the calibration of CO/CO<sub>2</sub> monitors used for periodic inspections of vehicles in cites. The calibration was performed in the selected ranges: 900 - 12,000 µmol/mol for CO and 2000 - 20,000 µmol/mol for CO<sub>2</sub>. The traceability of the measurement results to the SI units was ensured by using certified reference materials from CO/N<sub>2</sub> and CO<sub>2</sub>/N<sub>2</sub> primary gas mixtures. The method performance was evaluated by assessing its linearity, accuracy, precision, bias, and uncertainty of the calibration results. The calibration data exhibited a strong linear trend with R² values close to 1, indicating an excellent fit between the measured values and the calibration lines. Precision, expressed as relative standard deviation (%RSD), ranged from 0.48 to 4.56% for CO and from 0.97 to 3.53% for CO<sub>2</sub>, staying well below the 5% threshold for reporting results at a 95% confidence level. Accuracy measured as percent recovery, was consistently high (≥ 99.1%) for CO and ranged from 84.90% to 101.54% across the calibration range for CO<sub>2</sub>. In addition, the method exhibited minimal bias for both CO and CO<sub>2</sub> calibrations and thus provided a reliable and accurate approach for calibrating CO/CO<sub>2</sub> monitors used in vehicle inspections. Thus, it ensures the effectiveness of exhaust emission control for better environment. 展开更多
关键词 MONITORS Periodic inspection CO/CO2 Calibration LINEARITY Precision Accuracy
下载PDF
Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation
7
作者 Dingping Chen Zhiheng Zhu +1 位作者 Jinyang Fu Jilin He 《Computers, Materials & Continua》 SCIE EI 2024年第4期1679-1703,共25页
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su... The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels. 展开更多
关键词 Road tunnel crack inspection crack area sensing multiscale semantic segmentation CA-YOLO V7 DeepLab V3+
下载PDF
Unmanned Aerial Vehicle Inspection Routing and Scheduling for Engineering Management
8
作者 Lu Zhen Zhiyuan Yang +2 位作者 Gilbert Laporte Wen Yi Tianyi Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期223-239,共17页
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ... Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency. 展开更多
关键词 Engineering management Unmanned aerial vehicle inspection routing and scheduling OPTIMIZATION Mixed-integer linear programming model Variable neighborhood search metaheuristic
下载PDF
A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts
9
作者 Zia Ullah Lin Qi +2 位作者 E.J.Solteiro Pires Arsénio Reis Ricardo Rodrigues Nunes 《Computers, Materials & Continua》 SCIE EI 2024年第8期2387-2421,共35页
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear... The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration. 展开更多
关键词 Computer vision end-of-line visual inspection of antenna parts machine learning algorithms image processing techniques deep learning models
下载PDF
High-speed railway track components inspection framework based on YOLOv8 with high-performance model deployment
10
作者 Youzhi Tang Yu Qian 《High-Speed Railway》 2024年第1期42-50,共9页
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on... Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways. 展开更多
关键词 High-speed railway Track inspection Computer vision Deep learning Edge computing Real-time decision making
下载PDF
Bridge Condition Assessment by Visual Inspection-Croatian Experience
11
作者 Goran Puž 《Journal of Civil Engineering and Architecture》 2024年第10期504-514,共11页
Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual ... Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual inspection is the main tool for bridge condition assessment,and is therefore of crucial significance for planning periodic maintenance activities.Paper shall present the study aimed at harmonizing bridge assessment activities,which was conducted in early 2012 in company Hrvatske ceste-Croatian National Road Authority.Small RC bridges were chosen for this study,since visual inspection is usually only tool utilized for their assessment.Ratings obtained by inspection were analyzed using methods of mathematical statistics.The results point to weaknesses in the current assessment system,while the study itself constitutes a good basis for further improvement of management aids,manuals and procedures for bridge inspection. 展开更多
关键词 Visual inspection concrete bridges bridge management bridge rating
下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
12
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
下载PDF
From manual to automated fabric inspection
13
《China Textile》 2024年第2期40-41,共2页
Uster,Switzerland,28th March 2024–Uster Technologies offers a flexible solution to upgrade fabric inspection from manual to automated.Integration in existing production lines is quick and easy,and the data flow also ... Uster,Switzerland,28th March 2024–Uster Technologies offers a flexible solution to upgrade fabric inspection from manual to automated.Integration in existing production lines is quick and easy,and the data flow also brings extra benefits.It means fabric producers can significantly improve their yield with fast,accurate quality monitoring. 展开更多
关键词 USTER inspection FABRIC
下载PDF
Analysis of the Application of Bridge Rapid Inspection and Evaluation Technology
14
作者 Jiang Feng Qing Yang 《Journal of Architectural Research and Development》 2024年第1期49-55,共7页
Rapid bridge inspection and evaluation mainly uses information technology to test the quality of bridge infrastructure and structures,integrates the test results with the existing management system,completes the bridg... Rapid bridge inspection and evaluation mainly uses information technology to test the quality of bridge infrastructure and structures,integrates the test results with the existing management system,completes the bridge status assessment,establishes information management files to provide bridge disease problem inspection and analysis,and provides support for the application of disposal measures.This paper briefly discusses the necessity of applying rapid inspection and evaluation technology and analyzes the bridge’s rapid inspection and evaluation content,inspection system,and application process.We look forward to the future application prospects of this technology and supporting those in this field. 展开更多
关键词 BRIDGE Rapid inspection EVALUATION INFORMATIZATION
下载PDF
Defect Inspection Technology for Steel Truss Suspension Bridges
15
作者 Bo Liu Xu Meng +1 位作者 Ji Li Zhi Tu 《Journal of World Architecture》 2024年第2期12-16,共5页
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b... Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects. 展开更多
关键词 Steel truss suspension bridge DEFECT inspection technology
下载PDF
Surface form inspection with contact coordinate measurement:a review 被引量:4
16
作者 Yijun Shen Jieji Ren +3 位作者 Nuodi Huang Yang Zhang Xinquan Zhang Limin Zhu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期119-147,共29页
Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with ... Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy,robustness,and universality.In this paper,the existing research in the contact measurement field is systematically reviewed.First,different configurations of the measuring machines are introduced in detail,which may have influence on the corresponding sampling and inspection path generation criteria.Then,the entire inspection pipeline is divided into two stages,namely the pre-inspection and post-inspection stages.The typical methods of each sub-stage are systematically overviewed and classified,including sampling,accessibility analysis,inspection path generation,probe tip radius compensation,surface reconstruction,and uncertainty analysis.Apart from those classical research,the applications of the emerging deep learning technique in some specific tasks of measurement are introduced.Furthermore,some potential and promising trends are provided for future investigation. 展开更多
关键词 freeform surface form inspection contact measurement coordinate measurement on-machine inspection
下载PDF
Automated deep learning system for power line inspection image analysis and processing: architecture and design issues 被引量:1
17
作者 Daoxing Li Xiaohui Wang +1 位作者 Jie Zhang Zhixiang Ji 《Global Energy Interconnection》 EI CSCD 2023年第5期614-633,共20页
The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its... The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible . 展开更多
关键词 Transmission line inspection Deep learning Automated machine learning Image analysis and processing
下载PDF
M^(3)Res-Transformer:新冠肺炎胸部X-ray图像识别模型 被引量:1
18
作者 周涛 刘赟璨 +3 位作者 侯森宝 常晓玉 叶鑫宇 陆惠玲 《电子学报》 EI CAS CSCD 北大核心 2024年第2期589-601,共13页
新冠肺炎(COVID-19)自爆发以来严重影响人类生命健康,近年来残差神经网络广泛应用于COVID-19识别任务中,辅助医生快速地诊断COVID-19患者,但是COVID-19图像病变区域形状复杂、大小不一,与周围组织的边界模糊,导致网络难以提取有效特征.... 新冠肺炎(COVID-19)自爆发以来严重影响人类生命健康,近年来残差神经网络广泛应用于COVID-19识别任务中,辅助医生快速地诊断COVID-19患者,但是COVID-19图像病变区域形状复杂、大小不一,与周围组织的边界模糊,导致网络难以提取有效特征.本文针对上述问题,提出一种M^(3)Res-Transformer的新冠肺炎胸部X-ray图像识别模型,采用Res-Transformer作为模型的主干网络,结合ResNet和ViT,有效地整合局部病变特征和全局特征;设计混合残差注意力模块(mixed residual attention Module,mraM),同时考虑通道和空间位置的相互依赖性,增强网络的特征表达能力;为了增大感受野,提取多尺度特征,通过叠加具有不同扩张率的扩张卷积构造多尺度扩张残差模块(multiscale dilated residual Module,mdrM),根据不同层次特征尺度的差异,使用3个逐渐收缩尺度的mdrM进行多尺度特征提取;提出上下文交叉感知模块(contextual cross-awareness Module,ccaM),使用深层特征中的语义信息来引导浅层特征,然后将浅层特征中的空间信息嵌入深层特征中,采用交叉加权注意力机制高效聚合深层和浅层特征,获得更丰富的上下文信息.为了验证本文所提模型的有效性,在新冠肺炎胸部X-ray图像数据集上进行实验,与先进的CNN分类模型、融合不同注意力机制的ResNet50模型、基于Transformer的分类模型对比以及消融实验.结果表明,本文所提模型的Acc、Pre、Rec、F1-Score与Spe指标分别为96.33%、96.36%、96.33%、96.35%与96.26%,在COVID-19胸部X-ray图像识别任务中有效提升了识别精度,并通过可视化方法对其进行进一步验证,为COVID-19的辅助诊断提供重要的参考价值. 展开更多
关键词 COVID-19 胸部x-ray图像 残差神经网络 vision transformer 注意力机制
下载PDF
X-ray在鱼体组织及微量元素检测中的应用
19
作者 宋一帆 张胜茂 +4 位作者 张衡 唐峰华 张寒野 石永闯 崔雪森 《应用光学》 CAS 北大核心 2024年第1期166-176,共11页
鱼类硬质组织物,特别是骨骼支持鱼体和保护其体内器官的组织,对其进行特征检测分析是研究鱼类游泳运动、鱼类解剖、鱼体建模等的数据基础。随着X-ray技术的发展和国产设备的广泛应用,其仪器设备成本明显降低,使得X-ray在渔业研究与自动... 鱼类硬质组织物,特别是骨骼支持鱼体和保护其体内器官的组织,对其进行特征检测分析是研究鱼类游泳运动、鱼类解剖、鱼体建模等的数据基础。随着X-ray技术的发展和国产设备的广泛应用,其仪器设备成本明显降低,使得X-ray在渔业研究与自动化生产中的应用成为可能。首先介绍了X-ray技术的基本原理与其在鱼体组织检测中的应用,X-ray技术在鱼体组织及微量元素检测中的应用主要分为鱼类组织器官的无损检测和鱼体微量元素检测两部分,其中分别介绍了包括照相法、数字成像法、衍射技术和吸收光谱法等X-ray技术;然后综述其在鱼体组织器官建模、鱼骨检测、鱼类化石研究、鱼耳石分析和鱼体微量元素检测方面的应用,总结了Xray在渔业领域应用中存在的问题;最后对X-ray的渔业应用方向进行展望。 展开更多
关键词 x-ray 鱼体骨骼 鱼类耳石 鱼体建模 鱼体微量元素
下载PDF
Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath 被引量:2
20
作者 Jin Guo TianRan Sun +6 位作者 San Lu QuanMing Lu Yu Lin XueYi Wang Chi Wang RongSheng Wang Kai Huang 《Earth and Planetary Physics》 EI CSCD 2024年第1期47-58,共12页
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ... Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered. 展开更多
关键词 MAGNETOPAUSE x-ray emissivity x-ray imaging SMILE global hybrid-PIC simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部