Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of th...Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.展开更多
Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL...Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.展开更多
X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.T...X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.This paper briefly reviews the recent advances in the in-situ observation of aluminium alloys,magnesium alloys and nickel-based superalloys during solidification using laboratory XCT and synchrotron X-ray sources.The focus is on the growth kinetics of dendrites,porosity and secondary phases.In addition,in-situ characterization during the loading and corrosion process is also discussed.展开更多
BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was g...BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was greater than 25%of the joint.Currently,computed tomography(CT)has been gaining traction in the preoperative evaluation of ankle fractures.AIM To elucidate the similarity in dimensions and to correlate PM size in X-ray images with the articular surface of the affected tibial plafond in the axial view on CT(AXCT)of a PM fracture.METHODS Eighty-one patients(mean age:39.4±13.5 years)were evaluated(54.3%were male).Two independent examiners measured PM size in profile X-ray images(PMXR)and sagittal CT(SAGCT)slices.The correlation of the measurements between the examiners and the difference in the PM fragment sizes between the two images were compared.Next,the PM size in PMXR was compared with the surface of the tibial plafond involved in the fracture in AXCT according to the Haraguchi classification.RESULTS The correlation rates between the examiners were 0.93 and 0.94 for PMXR and SAGCT,respectively(P<0.001).Fragments were 2.12%larger in SAGCT than in PMXR(P=0.018).In PMXR,there were 56 cases<25%and 25 cases≥25%.When PMXR was<25%,AXCT corresponded to 10.13%of the tibial plafond.When PMXR was≥25%,AXCT was 24.52%(P<0.001).According to the Haraguchi classification,fracture types I and II had similar PMXR measurements that were greater than those of type III.When analyzing AXCT,a significant difference was found between the three types,with II>I>III(P<0.001).CONCLUSION PM fractures show different sizes using X-ray or CT images.CT showed a larger PM in the sagittal plane and allowed the visualization of the real dimensions of the tibial plafond surface.展开更多
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d...A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indica...The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.展开更多
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to...Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.展开更多
The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mec...The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mechanical grain harvesting.However,conventional BR evaluation and measurement methods have challenges and limitations.Microstructural crack parameters evaluation of maize kernel is of great importance to BR.In this connection,X-ray computed microtomography(μ-CT)has proven to be a quite useful method for the assessment of microstructure,as it provides important microstructural parameters,such as object volume,surface,surface/volume ratio,number of closed pores,and others.X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields bidimensional(2D)cross-sectional images of the sample as well as volume rendering.In this paper,six different maize hybrid genotypes are used as materials,and the BR of the maize kernels of each variety is tested in the field mechanical grain harvesting,and the BR is used as an index for evaluating the breakage resistance of the variety.The crack characteristic parameters of kernel were detected by X-ray micro-computed tomography,and the relationship between the BR and the kernel crack characteristics was analyzed by stepwise regression analysis.Establishing a relationship between crack characteristic parameters and BR of maize is vital for judging breakage resistance.The results of stepwise multiple linear regression(MLR)showed that the crack characteristics of the object surface,number of closed pores,surface of closed pores,and closed porosity percent were significantly correlated to the BR of field mechanical grain harvesting,with the standard partial regression coefficients of–0.998,–0.988,–0.999,and–0.998,respectively.The R2 of this model was 0.999.Results validation showed that the Stepwise MLR Model could well predict the BR of maize based on these four variables.展开更多
Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised...Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised due to cost and performance issues, many of which are linked to the microstructure of the porous carbon electrodes used. Here, for the first time, we offer a detailed study of the in situ effects of compression on a commercially available carbon felt electrode. Visualisation of electrode structure us- ing X-ray computed tomography shows the non-linear way that these materials compress and various metrics are used to elucidate the changes in porosity, pore size distribution and tortuosity factor under compressions from 0%-90%.展开更多
The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed st...The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.展开更多
As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)dis...As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.展开更多
X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus ...X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus reducing the radiation exposure and improving imaging speed.Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images,which compromises the image quality.We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their effcacy on numerical and experimental measurements.The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.展开更多
Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collec...Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.展开更多
As healthcare professionals continue to combat the coronavirus disease 2019(COVID-19)infection worldwide,there is an increasing interest in the role of imaging and the relevance of various modalities.Since imaging not...As healthcare professionals continue to combat the coronavirus disease 2019(COVID-19)infection worldwide,there is an increasing interest in the role of imaging and the relevance of various modalities.Since imaging not only helps assess the disease at the time of diagnosis but also aids evaluation of response to management,it is critical to examine the role of different modalities currently in use,such as baseline X-rays and computed tomography scans carefully.In this article,we will draw attention to the critical findings for the radiologist.Further,we will look at point of care ultrasound,an increasingly a popular tool in diagnostic medicine,as a component of COVID-19 management.展开更多
Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the f...Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.展开更多
Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-r...Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.展开更多
Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and we...Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and weight and length were determined by conventional means. Root volume and surface area were then calculated from the 3D images using state of the art software and methodology, and the measured and calculated measures were correlated. The only strong and significant correlation was between measured weight and calculated volume for mutants without root hairs. It is concluded that the software cannot segment out very small roots, but segmentation accuracy also depends on root structure in some unknown way. Any study using X-ray computed tomography to quantify roots as they grow in situ should start with a calibration for the conditions in question.展开更多
It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three type...The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12375157,12027902,and 11905011)。
文摘Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267 and 41877260)the Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13010201).
文摘Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.
文摘X-ray computed tomography(XCT)has recently emerged as a powerful tool for characterizing the evolution of microstructure during phase transformation in three dimensional(3D)such as dendritic solidification of alloys.This paper briefly reviews the recent advances in the in-situ observation of aluminium alloys,magnesium alloys and nickel-based superalloys during solidification using laboratory XCT and synchrotron X-ray sources.The focus is on the growth kinetics of dendrites,porosity and secondary phases.In addition,in-situ characterization during the loading and corrosion process is also discussed.
文摘BACKGROUND Ankle fractures are common lesions of the lower limbs.Approximately 40%of ankle fractures affect the posterior malleolus(PM).Historically,PM osteosynthesis was recommended when PM size in X-ray images was greater than 25%of the joint.Currently,computed tomography(CT)has been gaining traction in the preoperative evaluation of ankle fractures.AIM To elucidate the similarity in dimensions and to correlate PM size in X-ray images with the articular surface of the affected tibial plafond in the axial view on CT(AXCT)of a PM fracture.METHODS Eighty-one patients(mean age:39.4±13.5 years)were evaluated(54.3%were male).Two independent examiners measured PM size in profile X-ray images(PMXR)and sagittal CT(SAGCT)slices.The correlation of the measurements between the examiners and the difference in the PM fragment sizes between the two images were compared.Next,the PM size in PMXR was compared with the surface of the tibial plafond involved in the fracture in AXCT according to the Haraguchi classification.RESULTS The correlation rates between the examiners were 0.93 and 0.94 for PMXR and SAGCT,respectively(P<0.001).Fragments were 2.12%larger in SAGCT than in PMXR(P=0.018).In PMXR,there were 56 cases<25%and 25 cases≥25%.When PMXR was<25%,AXCT corresponded to 10.13%of the tibial plafond.When PMXR was≥25%,AXCT was 24.52%(P<0.001).According to the Haraguchi classification,fracture types I and II had similar PMXR measurements that were greater than those of type III.When analyzing AXCT,a significant difference was found between the three types,with II>I>III(P<0.001).CONCLUSION PM fractures show different sizes using X-ray or CT images.CT showed a larger PM in the sagittal plane and allowed the visualization of the real dimensions of the tibial plafond surface.
基金Projects(41572277,41877229) supported by the National Natural Science Foundation of ChinaProject(2015A030313118) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(201607010023) supported by the Science and Technology Program of Guangzhou,China
文摘A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金Funded by the National Natural Science Foundation of China(No.51072035),the Ph D Program’s Foundation of Ministry of Education of China(No.20090092110029)the Research Innovation Program for College Graduates of Jiangsu Province(No.CXZZ_0145)the Scientific Research Foundation of Graduate School of Southeast University(Nos.YBJJ1127 and YBPY1208)
文摘The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12102312 and 41372314)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Foundation, Chengdu University of Technology, China (Grant No. SKLGP2021K011)
文摘Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.
基金This work was supported by the National Key R&D Program of China(2016YFD0300110,2016YFD0300101)the earmarked fund for China Agriculture Research System(CARS-02-25)the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences。
文摘The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate(BR).BR is often the key characteristic that is measured to select hybrids desirable for mechanical grain harvesting.However,conventional BR evaluation and measurement methods have challenges and limitations.Microstructural crack parameters evaluation of maize kernel is of great importance to BR.In this connection,X-ray computed microtomography(μ-CT)has proven to be a quite useful method for the assessment of microstructure,as it provides important microstructural parameters,such as object volume,surface,surface/volume ratio,number of closed pores,and others.X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields bidimensional(2D)cross-sectional images of the sample as well as volume rendering.In this paper,six different maize hybrid genotypes are used as materials,and the BR of the maize kernels of each variety is tested in the field mechanical grain harvesting,and the BR is used as an index for evaluating the breakage resistance of the variety.The crack characteristic parameters of kernel were detected by X-ray micro-computed tomography,and the relationship between the BR and the kernel crack characteristics was analyzed by stepwise regression analysis.Establishing a relationship between crack characteristic parameters and BR of maize is vital for judging breakage resistance.The results of stepwise multiple linear regression(MLR)showed that the crack characteristics of the object surface,number of closed pores,surface of closed pores,and closed porosity percent were significantly correlated to the BR of field mechanical grain harvesting,with the standard partial regression coefficients of–0.998,–0.988,–0.999,and–0.998,respectively.The R2 of this model was 0.999.Results validation showed that the Stepwise MLR Model could well predict the BR of maize based on these four variables.
基金support from the EPSRC under grants EP/L014289/1 EP/N032888/1 and EP/M014045/1the STFC Global Challenges Network in Batteries and Electrochemical Energy Devices under the grant ST/N002385/1 for facilitation of travelfunding from the Royal Academy of Engineering
文摘Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently un- derutilised due to cost and performance issues, many of which are linked to the microstructure of the porous carbon electrodes used. Here, for the first time, we offer a detailed study of the in situ effects of compression on a commercially available carbon felt electrode. Visualisation of electrode structure us- ing X-ray computed tomography shows the non-linear way that these materials compress and various metrics are used to elucidate the changes in porosity, pore size distribution and tortuosity factor under compressions from 0%-90%.
基金financially supported by the National Science Foundation of China-Yunnan Joint Fund(U1502232)the Natural Science Foundation of Yunnan Province(2014FD007)the Natural Science Foundation of Kunming University of Science and Technology(KKSY201406009)
文摘The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.
基金the School of Life Science and Technology of Xidian University for providing experimental data acquisition system.This work was supported by the National Natural Science Foundation of China under Grant(Nos.61372046,61401264,11571012,61601363,61640418,61572400)the Science and Technology Plan Program in Shaanxi Province of China under Grant(Nos.2013K12-20-12,2015KW-002)+2 种基金the Natural Science Research Plan Program in Shaanxi Province of China under Grant(No.2015JM6322)the Scienti¯c Research Founded by Shaanxi Provincial Education Department under Grant No.16JK1772the Scienti¯c Research Foundation of Northwest University under Grant Nos.338050018 and 338020012.
文摘As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
基金supported by the National Cancer Institute of the National Institutes of Health under Award No.(R37CA240806).
文摘X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus reducing the radiation exposure and improving imaging speed.Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images,which compromises the image quality.We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their effcacy on numerical and experimental measurements.The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.
基金Supported by the National Key Research and Development Program of China(Nos.2018YFD0900901,2019YFD0901300)the Scientific Research Fund of the Second Institute of Oceanography,MNR(Nos.JG1906,JG1616,JG1910)+4 种基金the National Natural Science Foundation of China(Nos.41606192/41176140,41706125,41806136)the National Science&Technology Basic Work Program of China(No.2015FY110600)the Key Projects of Philosophy and Social Sciences Research,Ministry of Education,China(No.18JZD059)the Zhejiang Qingshan Lake Innovation Platform for Marine Science and Technology(No.2017E80001)the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(No.LORCE,14282)。
文摘Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.
文摘As healthcare professionals continue to combat the coronavirus disease 2019(COVID-19)infection worldwide,there is an increasing interest in the role of imaging and the relevance of various modalities.Since imaging not only helps assess the disease at the time of diagnosis but also aids evaluation of response to management,it is critical to examine the role of different modalities currently in use,such as baseline X-rays and computed tomography scans carefully.In this article,we will draw attention to the critical findings for the radiologist.Further,we will look at point of care ultrasound,an increasingly a popular tool in diagnostic medicine,as a component of COVID-19 management.
文摘Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-208 and lzujbky-2016-32)
文摘Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.
文摘Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and weight and length were determined by conventional means. Root volume and surface area were then calculated from the 3D images using state of the art software and methodology, and the measured and calculated measures were correlated. The only strong and significant correlation was between measured weight and calculated volume for mutants without root hairs. It is concluded that the software cannot segment out very small roots, but segmentation accuracy also depends on root structure in some unknown way. Any study using X-ray computed tomography to quantify roots as they grow in situ should start with a calibration for the conditions in question.
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Funded by the Scientific Research Foundation of the Graduate School of Southeast University (YBJJ1113)the National Basic Research Program of China (No.2009CB623200)the National Natural Science Foundation of China (No.51178103)
文摘The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.