Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,...Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.展开更多
In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared...In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.展开更多
The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0....The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
The gamma-ray mass attenuation coefficients of blood,bone,lung,eye lens,adipose,tissue,muscle,brain and skin were calculated at different energies(60,80,150,400,500,600,1000,1250,1500,and 2000 keV) by various theoreti...The gamma-ray mass attenuation coefficients of blood,bone,lung,eye lens,adipose,tissue,muscle,brain and skin were calculated at different energies(60,80,150,400,500,600,1000,1250,1500,and 2000 keV) by various theoretical methods such as FLUKA,GEANT4 Monte Carlo(MC) methods and XCOM program in this work.Calculated coefficients were also compared with the National Institute of Standards and Technology(NIST) values.Obtained results were highly in accordance with each other and NIST values.Our results showed that FLUKA was quite convenient in comparison to GEANT4 in the calculation of the mass attenuation coefficients of the used human body samples for low-energy photons(60,80,and 150 keV) when compared with the NIST values.展开更多
The gamma-ray linear and the mass attenuation coefficients of Pb, Al, Cu, and plexiglass materials were calculated from both experimental and theoretical(simulation) methods. For the experimental results, a spectromet...The gamma-ray linear and the mass attenuation coefficients of Pb, Al, Cu, and plexiglass materials were calculated from both experimental and theoretical(simulation) methods. For the experimental results, a spectrometer, which was consisted of a Na I(Tl) inorganic scintillation detector, was used. The theoretical attenuation values were calculated by means of the FLUKA Monte Carlo(MC) and XCOM programs. Obtained attenuation coefficients from the experiment and the theoretical methods were compared with each other and literature values.展开更多
文摘Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.
文摘In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.
文摘The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
基金supported by Scientific Research 277 Project of Ege University under Project No.2014 FEN 026278 Uludag University under Project No.OUAP(F)-2012/26
文摘The gamma-ray mass attenuation coefficients of blood,bone,lung,eye lens,adipose,tissue,muscle,brain and skin were calculated at different energies(60,80,150,400,500,600,1000,1250,1500,and 2000 keV) by various theoretical methods such as FLUKA,GEANT4 Monte Carlo(MC) methods and XCOM program in this work.Calculated coefficients were also compared with the National Institute of Standards and Technology(NIST) values.Obtained results were highly in accordance with each other and NIST values.Our results showed that FLUKA was quite convenient in comparison to GEANT4 in the calculation of the mass attenuation coefficients of the used human body samples for low-energy photons(60,80,and 150 keV) when compared with the NIST values.
基金Supported by TUBITAK,the Scientific and Technical Research Council of TURKEY(No.197T087)EBILTEM,Center of Science and Technology,Ege University(No.99 BIL 001)+1 种基金the Scientific Research Project of Ege University(No.2011 FEN 085)Uludag University(No.OUAP(F)-2012/26)
文摘The gamma-ray linear and the mass attenuation coefficients of Pb, Al, Cu, and plexiglass materials were calculated from both experimental and theoretical(simulation) methods. For the experimental results, a spectrometer, which was consisted of a Na I(Tl) inorganic scintillation detector, was used. The theoretical attenuation values were calculated by means of the FLUKA Monte Carlo(MC) and XCOM programs. Obtained attenuation coefficients from the experiment and the theoretical methods were compared with each other and literature values.