Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the proces...Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the process of diagnosing breast cancer.Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels.No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer.A strategy for detecting breast cancer is provided in the context of this investigation.Histopathology image texture data is used with the wavelet transform in this technique.The proposed method comprises converting histopathological images from Red Green Blue(RGB)to Chrominance of Blue and Chrominance of Red(YCBCR),utilizing a wavelet transform to extract texture information,and classifying the images with Extreme Gradient Boosting(XGBOOST).Furthermore,SMOTE has been used for resampling as the dataset has imbalanced samples.The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27%on the BreakHis 1.040X dataset,98.95%on the BreakHis 1.0100X dataset,98.92%on the BreakHis 1.0200X dataset,98.78%on the BreakHis 1.0400X dataset,and 98.80%on the combined dataset.The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.展开更多
Mueller matrix imaging is emerging for the quantitative characterization of pathological microstructures and is especially sensitive to fibrous structures.Liver fibrosis is a characteristic of many types of chronic li...Mueller matrix imaging is emerging for the quantitative characterization of pathological microstructures and is especially sensitive to fibrous structures.Liver fibrosis is a characteristic of many types of chronic liver diseases.The clinical diagnosis of liver fibrosis requires time-consuming multiple staining processes that specifically target on fibrous structures.The staining proficiency of technicians and the subjective visualization of pathologists may bring inconsistency to clinical diagnosis.Mueller matrix imaging can reduce the multiple staining processes and provide quantitative diagnostic indicators to characterize liver fibrosis tissues.In this study,a fibersensitive polarization feature parameter(PFP)was derived through the forward sequential feature selection(SFS)and linear discriminant analysis(LDA)to target on the identification of fibrous structures.Then,the Pearson correlation coeffcients and the statistical T-tests between the fiber-sensitive PFP image textures and the liver fibrosis tissues were calculated.The results show the gray level run length matrix(GLRLM)-based run entropy that measures the heterogeneity of the PFP image was most correlated to the changes of liver fibrosis tissues at four stages with a Pearson correlation of 0.6919.The results also indicate the highest Pearson correlation of 0.9996 was achieved through the linear regression predictions of the combination of the PFP image textures.This study demonstrates the potential of deriving a fiber-sensitive PFP to reduce the multiple staining process and provide textures-based quantitative diagnostic indicators for the staging of liver fibrosis.展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati...The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.展开更多
Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirm...Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and 〉20 mm. Their texture features were segmented and extracted. The differences in the image features between benign and malignant SPNs were compared. The SPNs in these three groups were determined and analyzed with the texture features of images. Results: These 379 SPNs were successfully segmented using the 2D Otsu threshold method and the self-adaptive threshold segmentation method. The texture features of these SPNs were obtained using the method of grey level co-occurrence matrix (GLCM). Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. The entropy, contrast, energy, homogeneity, and correlation were 3.5597±0.6470, 0.5384±0.2561, 0.1921±0.1256, 0.8281±0.0604, and 0.8748±0.0740 in the benign SPNs and 3.8007±0.6235, 0.6088±0.2961, 0.1673±0.1070, 0.7980±0.0555, and 0.8550±0.0869 in the malignant SPNs (all P〈0.05). The sensitivity, specificity, and accuracy of the texture features of images were 83.3%, 90.0%, and 86.8%, respectively, for SPNs sized 〈10 mm, and were 86.6%, 88.2%, and 87.1%, respectively, for SPNs sized 11-20 mm and 94.7%, 91.8%, and 93.9%, respectively, for SPNs sized 〉20 mm. Conclusions: The entropy and contrast of malignant pulmonary nodules have been demonstrated to be higher in comparison to those of benign pulmonary nodules, while the energy, homogeneity correlation of malignant pulmonary nodules are lower than those of benign pulmonary nodules. The texture features of images can reflect the tissue features and have high sensitivity, specificity, and accuracy in differentiating SPNs. The sensitivity and accuracy increase for larger SPNs.展开更多
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t...In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.展开更多
This paper presents a novel approach to feature subset selection using genetic algorithms. This approach has the ability to accommodate multiple criteria such as the accuracy and cost of classification into the proces...This paper presents a novel approach to feature subset selection using genetic algorithms. This approach has the ability to accommodate multiple criteria such as the accuracy and cost of classification into the process of feature selection and finds the effective feature subset for texture classification. On the basis of the effective feature subset selected, a method is described to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The methodology presented in this paper is illustrated by its application to the problem of trees extraction from aerial images.展开更多
To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage ...To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.展开更多
Surgical excision is an effective treatment for oral squamous cell carcinoma(OSCC),but exact intraoperative differentiation OSCC from the normal tissue is the first premise.As a noninvasive imaging technique,optical c...Surgical excision is an effective treatment for oral squamous cell carcinoma(OSCC),but exact intraoperative differentiation OSCC from the normal tissue is the first premise.As a noninvasive imaging technique,optical coherence tomography(OCT)has the nearly same resolution as the histopathological examination,whose images contain rich information to assist surgeons to make clinical decisions.We extracted kinds of texture features from OCT images obtained by a home-made swept-source OCT system in this paper,and studied the identification of OSCC based on different combinations of texture features and machine learning classifiers.It was demonstrated that different combinations had different accuracies,among which the combination of texture features,gray level co-occurrence matrix(GLCM),Laws'texture measnres(LM),and center symmetric auto-correlation(CSAC),and SVM as the classifier,had the optimal comprehensive identification effect,whose accuracy was 94.1%.It was proven that it is feasible to distinguish OSCC based on texture features in OCT images,and it has great potential in helping surgeons make rapid and accurate decisions in oral clinical practice.展开更多
Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were ...Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were diagnosed with ischemic white matter lesion(WML)with MR-1.5 T and MR-3.0 T scanners.Histogram texture features which included mean signal intensity(Mean),Skewness and Kurtosis,and gray level co-occurrence matrix(GLCM)texture features which included angular second moment(ASM),Contrast,Correlation,Inverse difference moment(IDM)and Entropy,of regions of interest located in the area of WML and normal white matter(NWM)were measured by ImageJ software.The texture parameters acquired with MR-1.5 T scanning were compared with MR-3.0 T scanning.Results The Mean of both WML and NWM obtained with MR-1.5 T scanning was significantly lower than that acquired with MR-3.0 T(P<0.001),while Skewness and Kurtosis between MR-1.5 T and MR-3.0 T scanning showed no significant difference(P>0.05).ASM,Correlation and IDM of both WML and NWM acquired with MR-1.5 T revealed significantly lower values than those with MR-3.0 T(P<0.001),while Contrast and Entropy acquired with MR-1.5 T showed significantly higher values than those with MR-3.0 T(P<0.001).Conclusion MR field strength showed no significant effect on histogram textures,while had significant effect on GLCM texture features of cerebral T2-FLAIR images,which indicated that it should be cautious to explain the texture results acquired based on the different MR field strength.展开更多
Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This stud...Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM +Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.展开更多
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ...In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.展开更多
Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmenta...Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.展开更多
Over the past years,image manipulation tools have become widely accessible and easier to use,which made the issue of image tampering far more severe.As a direct result to the development of sophisticated image-editing...Over the past years,image manipulation tools have become widely accessible and easier to use,which made the issue of image tampering far more severe.As a direct result to the development of sophisticated image-editing applications,it has become near impossible to recognize tampered images with naked eyes.Thus,to overcome this issue,computer techniques and algorithms have been developed to help with the identification of tampered images.Research on detection of tampered images still carries great challenges.In the present study,we particularly focus on image splicing forgery,a type of manipulation where a region of an image is transposed onto another image.The proposed study consists of four features extraction stages used to extract the important features from suspicious images,namely,Fractal Entropy(FrEp),local binary patterns(LBP),Skewness,and Kurtosis.The main advantage of FrEp is the ability to extract the texture information contained in the input image.Finally,the“support vector machine”(SVM)classification is used to classify images into either spliced or authentic.Comparative analysis shows that the proposed algorithm performs better than recent state-of-the-art of splicing detection methods.Overall,the proposed algorithm achieves an ideal balance between performance,accuracy,and efficacy,which makes it suitable for real-world applications.展开更多
Objective To develop a computer-aided diagnosis(CAD)system with automatic contouring and morphologic and textural analysis to aid on the classification of breast nodules on ultrasound images.Methods A modified Level S...Objective To develop a computer-aided diagnosis(CAD)system with automatic contouring and morphologic and textural analysis to aid on the classification of breast nodules on ultrasound images.Methods A modified Level Set method was proposed to automatically segment the breast nodules(46malignant and 60benign nodules).Following,16morphologic features and 17texture features from the extracted contour were calculated and principal component analysis(PCA)was applied to find the optimal feature vector dimensions.Fuzzy C-means classifier was utilized to identify the breast nodule as benign or malignant with selected principal vectors.Results The performance of morphologic features was 78.30%for accuracy,67.39%for sensitivity and 86.67%for specificity,while the latter was 72.64%,58.70%and 83.33%,respectively.After the combination of the two features,the result was exactly the same with the morphologic performance.Conclusion This system performs well in classifying the malignant breast nodule from the benign breast nodule.展开更多
The lack of understanding of the psychometric properties on the basic texture features forming tactile texture sense hinders the development of haptic rendering technology of textiles. The differential threshold and W...The lack of understanding of the psychometric properties on the basic texture features forming tactile texture sense hinders the development of haptic rendering technology of textiles. The differential threshold and Weber fraction were investigated for a deep understanding of how surface texture features of fabrics affect the perceived roughness sensation by the constant stimulus method and the paired comparison method. The results showed that the differential threshold for the mean deviation of surface profile was0. 86 μm,and that the differential threshold of texture spatial period(TSP) was 2. 48 mm. And also,the difference thresholds and Weber fraction were affected by the reference stimulus intensity. As there is a significant interaction between four extracted texture feature indexes,any of the indexes alone cannot represent roughness sensation of fabrics.展开更多
This paper is focused on the method for extracting glacier area based on ENVISAT ASAR Wide Swath Modes (WSM) data and digital elevation model (DEM) data, using support vector machines (SVM) classification method...This paper is focused on the method for extracting glacier area based on ENVISAT ASAR Wide Swath Modes (WSM) data and digital elevation model (DEM) data, using support vector machines (SVM) classification method. The digitized result of the glaci- er coverage area in the western Qilian Mountains was extracted based on Enhanced LandSat Thematic Mapper (ETM+) imagery, which was used to validate the precision of glacier extraction result. Because of similar backscattering of glacier, shadow and wa- ter, precision of the glacier coverage area extracted from single-polarization WSM data using SVM was only 35.4%. Then, texture features were extracted by the grey level co-occurrence matrix (GLCM), with extracted glacier coverage area based on WSM data and texture feature information. Compared with the result extracted from WSM data, the precision improved 13.2%. However, the glacier was still seriously confused with shadow and water. Finally, DEM data was introduced to extract the glacier coverage area. Water and glacier can be differentiated because their distribution area has different elevations; shadow can be removed from the classification result based on simulated shadow imagery created by DEM data and SAR imaging parameters; finally, the glacier coverage area was extracted and the precision reached to 90.2%. Thus, it can be demonstrated that the glacier can be accurately semi-automatically extracted from SAR with this method. The method is suitable not only for ENVISAT ASAR WSM imagery, but also for other satellite SAR imagery, especially for SAR imagery covering mountainous areas.展开更多
Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in moun...Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in mountainous terrain. Mountainous terrain mapping using ALOS image faces numerous challenges. These include spectral confusion with other land cover features, topographic effects on spectral signatures (such as shadow). At first, topographic radiometric correction was carried out to remove the illumination effects of topography. In addition to spectral features, texture features were used to assist classification in this paper. And texture features extracted based on GLCM (Gray Level Co- occurrence Matrix) were not only used for segmentation, but also used for building rules. The performance of the method was evaluated and compared with Maximum Likelihood Classification (MLC). Results showed that the object-oriented method integrating spectral and texture features has achieved overall accuracy of 85.73% with a kappa coefficient of 0.824, which is 13.48% and o.145 respectively higher than that got by MLC method. It indicated that texture features can significantly improve overall accuracy, kappa coefficient, and the classification precision of existing spectrum confusion features. Object-oriented method Integrating spectral and texture features is suitable for land use extraction of ALOS image in mountainous terrain.展开更多
In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face ...In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes.The spread of face manipulation videos is very easy to bring fake information.Therefore,it is important to develop effective detection methods to verify the authenticity of the videos.Due to that it is still challenging for current forgery technologies to generate all facial details and the blending operations are used in the forgery process,the texture details of the fake face are insufficient.Therefore,in this paper,a new method is proposed to detect DeepFake videos.Firstly,the texture features are constructed,which are based on the gradient domain,standard deviation,gray level co-occurrence matrix and wavelet transform of the face region.Then,the features are processed by the feature selection method to form a discriminant feature vector,which is finally employed to SVM for classification at the frame level.The experimental results on the mainstream DeepFake datasets demonstrate that the proposed method can achieve ideal performance,proving the effectiveness of the proposed method for DeepFake videos detection.展开更多
This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, wh...This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, which can not only detect the edge and lines but also avoid stretching edge and suppressing lines of the former algorithm. Experimental results with both simulated and real SAR images verify the advantage and practicability of the improved method.展开更多
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R236),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the process of diagnosing breast cancer.Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels.No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer.A strategy for detecting breast cancer is provided in the context of this investigation.Histopathology image texture data is used with the wavelet transform in this technique.The proposed method comprises converting histopathological images from Red Green Blue(RGB)to Chrominance of Blue and Chrominance of Red(YCBCR),utilizing a wavelet transform to extract texture information,and classifying the images with Extreme Gradient Boosting(XGBOOST).Furthermore,SMOTE has been used for resampling as the dataset has imbalanced samples.The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27%on the BreakHis 1.040X dataset,98.95%on the BreakHis 1.0100X dataset,98.92%on the BreakHis 1.0200X dataset,98.78%on the BreakHis 1.0400X dataset,and 98.80%on the combined dataset.The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11974206 and 61527826).
文摘Mueller matrix imaging is emerging for the quantitative characterization of pathological microstructures and is especially sensitive to fibrous structures.Liver fibrosis is a characteristic of many types of chronic liver diseases.The clinical diagnosis of liver fibrosis requires time-consuming multiple staining processes that specifically target on fibrous structures.The staining proficiency of technicians and the subjective visualization of pathologists may bring inconsistency to clinical diagnosis.Mueller matrix imaging can reduce the multiple staining processes and provide quantitative diagnostic indicators to characterize liver fibrosis tissues.In this study,a fibersensitive polarization feature parameter(PFP)was derived through the forward sequential feature selection(SFS)and linear discriminant analysis(LDA)to target on the identification of fibrous structures.Then,the Pearson correlation coeffcients and the statistical T-tests between the fiber-sensitive PFP image textures and the liver fibrosis tissues were calculated.The results show the gray level run length matrix(GLRLM)-based run entropy that measures the heterogeneity of the PFP image was most correlated to the changes of liver fibrosis tissues at four stages with a Pearson correlation of 0.6919.The results also indicate the highest Pearson correlation of 0.9996 was achieved through the linear regression predictions of the combination of the PFP image textures.This study demonstrates the potential of deriving a fiber-sensitive PFP to reduce the multiple staining process and provide textures-based quantitative diagnostic indicators for the staging of liver fibrosis.
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.
基金Project(51722401)supported by the National Natural Science Foundation for Excellent Young Scholars of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51734001)supported by the Key Program of National Natural Science Foundation of China
文摘The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.
基金supported by National Natural Science Fund project [81202284]Guangdong Provincial Natural Science Fund project [S2011040004735]+2 种基金Project for Outstanding Young Innovative Talents in Colleges and Universities of Guangdong Province [LYM11106]Special Research Fund for Basic Scientific Research Projects in Central Universities [21612305, 21612101]Guangzhou Municipal Science and Technology Fund project [2014J4100119]
文摘Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and 〉20 mm. Their texture features were segmented and extracted. The differences in the image features between benign and malignant SPNs were compared. The SPNs in these three groups were determined and analyzed with the texture features of images. Results: These 379 SPNs were successfully segmented using the 2D Otsu threshold method and the self-adaptive threshold segmentation method. The texture features of these SPNs were obtained using the method of grey level co-occurrence matrix (GLCM). Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. The entropy, contrast, energy, homogeneity, and correlation were 3.5597±0.6470, 0.5384±0.2561, 0.1921±0.1256, 0.8281±0.0604, and 0.8748±0.0740 in the benign SPNs and 3.8007±0.6235, 0.6088±0.2961, 0.1673±0.1070, 0.7980±0.0555, and 0.8550±0.0869 in the malignant SPNs (all P〈0.05). The sensitivity, specificity, and accuracy of the texture features of images were 83.3%, 90.0%, and 86.8%, respectively, for SPNs sized 〈10 mm, and were 86.6%, 88.2%, and 87.1%, respectively, for SPNs sized 11-20 mm and 94.7%, 91.8%, and 93.9%, respectively, for SPNs sized 〉20 mm. Conclusions: The entropy and contrast of malignant pulmonary nodules have been demonstrated to be higher in comparison to those of benign pulmonary nodules, while the energy, homogeneity correlation of malignant pulmonary nodules are lower than those of benign pulmonary nodules. The texture features of images can reflect the tissue features and have high sensitivity, specificity, and accuracy in differentiating SPNs. The sensitivity and accuracy increase for larger SPNs.
基金Project supported by the National Natural Science Foundation of China (Grant No.60502039), the Shanghai Rising-Star Program (Grant No.06QA14022), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.
文摘This paper presents a novel approach to feature subset selection using genetic algorithms. This approach has the ability to accommodate multiple criteria such as the accuracy and cost of classification into the process of feature selection and finds the effective feature subset for texture classification. On the basis of the effective feature subset selected, a method is described to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The methodology presented in this paper is illustrated by its application to the problem of trees extraction from aerial images.
基金funding by the National Natural Science Foundation of China(Nos.51474039 and 51404046)the Project of Shanxi Provincial Federation of Coalbed Methane Research(No.2013012010)the Science Foundation of North University of China(No.XJJ2016033)
文摘To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.
基金This study was supported by the National Natural Science Foundation of China(No.61875092)Science and Technology Support Program of Tianjin(17YFZCSY00740)+1 种基金the Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300)the Fundamental Research Funds for the Central Universities,Nankai University(63201178).
文摘Surgical excision is an effective treatment for oral squamous cell carcinoma(OSCC),but exact intraoperative differentiation OSCC from the normal tissue is the first premise.As a noninvasive imaging technique,optical coherence tomography(OCT)has the nearly same resolution as the histopathological examination,whose images contain rich information to assist surgeons to make clinical decisions.We extracted kinds of texture features from OCT images obtained by a home-made swept-source OCT system in this paper,and studied the identification of OSCC based on different combinations of texture features and machine learning classifiers.It was demonstrated that different combinations had different accuracies,among which the combination of texture features,gray level co-occurrence matrix(GLCM),Laws'texture measnres(LM),and center symmetric auto-correlation(CSAC),and SVM as the classifier,had the optimal comprehensive identification effect,whose accuracy was 94.1%.It was proven that it is feasible to distinguish OSCC based on texture features in OCT images,and it has great potential in helping surgeons make rapid and accurate decisions in oral clinical practice.
文摘Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were diagnosed with ischemic white matter lesion(WML)with MR-1.5 T and MR-3.0 T scanners.Histogram texture features which included mean signal intensity(Mean),Skewness and Kurtosis,and gray level co-occurrence matrix(GLCM)texture features which included angular second moment(ASM),Contrast,Correlation,Inverse difference moment(IDM)and Entropy,of regions of interest located in the area of WML and normal white matter(NWM)were measured by ImageJ software.The texture parameters acquired with MR-1.5 T scanning were compared with MR-3.0 T scanning.Results The Mean of both WML and NWM obtained with MR-1.5 T scanning was significantly lower than that acquired with MR-3.0 T(P<0.001),while Skewness and Kurtosis between MR-1.5 T and MR-3.0 T scanning showed no significant difference(P>0.05).ASM,Correlation and IDM of both WML and NWM acquired with MR-1.5 T revealed significantly lower values than those with MR-3.0 T(P<0.001),while Contrast and Entropy acquired with MR-1.5 T showed significantly higher values than those with MR-3.0 T(P<0.001).Conclusion MR field strength showed no significant effect on histogram textures,while had significant effect on GLCM texture features of cerebral T2-FLAIR images,which indicated that it should be cautious to explain the texture results acquired based on the different MR field strength.
基金Supported by the National Key Basic Research Development Pro-gram (2009CB421302 )National Natural Science Foundation ofChina (40861020,40961025,40901163)+1 种基金Natural Science Foun-dation of Xinjiang (200821128 )Open Foundation of State KeyLaboratory of Resources and Environment Information ystems(2010KF0003SA)
文摘Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM +Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.
文摘In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.
文摘Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.
基金This research was funded by the Faculty Program Grant(GPF096C-2020),University of Malaya,Malaysia.
文摘Over the past years,image manipulation tools have become widely accessible and easier to use,which made the issue of image tampering far more severe.As a direct result to the development of sophisticated image-editing applications,it has become near impossible to recognize tampered images with naked eyes.Thus,to overcome this issue,computer techniques and algorithms have been developed to help with the identification of tampered images.Research on detection of tampered images still carries great challenges.In the present study,we particularly focus on image splicing forgery,a type of manipulation where a region of an image is transposed onto another image.The proposed study consists of four features extraction stages used to extract the important features from suspicious images,namely,Fractal Entropy(FrEp),local binary patterns(LBP),Skewness,and Kurtosis.The main advantage of FrEp is the ability to extract the texture information contained in the input image.Finally,the“support vector machine”(SVM)classification is used to classify images into either spliced or authentic.Comparative analysis shows that the proposed algorithm performs better than recent state-of-the-art of splicing detection methods.Overall,the proposed algorithm achieves an ideal balance between performance,accuracy,and efficacy,which makes it suitable for real-world applications.
文摘Objective To develop a computer-aided diagnosis(CAD)system with automatic contouring and morphologic and textural analysis to aid on the classification of breast nodules on ultrasound images.Methods A modified Level Set method was proposed to automatically segment the breast nodules(46malignant and 60benign nodules).Following,16morphologic features and 17texture features from the extracted contour were calculated and principal component analysis(PCA)was applied to find the optimal feature vector dimensions.Fuzzy C-means classifier was utilized to identify the breast nodule as benign or malignant with selected principal vectors.Results The performance of morphologic features was 78.30%for accuracy,67.39%for sensitivity and 86.67%for specificity,while the latter was 72.64%,58.70%and 83.33%,respectively.After the combination of the two features,the result was exactly the same with the morphologic performance.Conclusion This system performs well in classifying the malignant breast nodule from the benign breast nodule.
基金National Natural Science Foundations of China(No.51175076,No.11232005)Shanghai Natural Science Fund,China(No.12ZR1400500)Fundamental Research Funds for the Central Universities of China
文摘The lack of understanding of the psychometric properties on the basic texture features forming tactile texture sense hinders the development of haptic rendering technology of textiles. The differential threshold and Weber fraction were investigated for a deep understanding of how surface texture features of fabrics affect the perceived roughness sensation by the constant stimulus method and the paired comparison method. The results showed that the differential threshold for the mean deviation of surface profile was0. 86 μm,and that the differential threshold of texture spatial period(TSP) was 2. 48 mm. And also,the difference thresholds and Weber fraction were affected by the reference stimulus intensity. As there is a significant interaction between four extracted texture feature indexes,any of the indexes alone cannot represent roughness sensation of fabrics.
基金supported by the Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences (Y184C21001)the State Key Program of National Natural Science of China(Y011441001)
文摘This paper is focused on the method for extracting glacier area based on ENVISAT ASAR Wide Swath Modes (WSM) data and digital elevation model (DEM) data, using support vector machines (SVM) classification method. The digitized result of the glaci- er coverage area in the western Qilian Mountains was extracted based on Enhanced LandSat Thematic Mapper (ETM+) imagery, which was used to validate the precision of glacier extraction result. Because of similar backscattering of glacier, shadow and wa- ter, precision of the glacier coverage area extracted from single-polarization WSM data using SVM was only 35.4%. Then, texture features were extracted by the grey level co-occurrence matrix (GLCM), with extracted glacier coverage area based on WSM data and texture feature information. Compared with the result extracted from WSM data, the precision improved 13.2%. However, the glacier was still seriously confused with shadow and water. Finally, DEM data was introduced to extract the glacier coverage area. Water and glacier can be differentiated because their distribution area has different elevations; shadow can be removed from the classification result based on simulated shadow imagery created by DEM data and SAR imaging parameters; finally, the glacier coverage area was extracted and the precision reached to 90.2%. Thus, it can be demonstrated that the glacier can be accurately semi-automatically extracted from SAR with this method. The method is suitable not only for ENVISAT ASAR WSM imagery, but also for other satellite SAR imagery, especially for SAR imagery covering mountainous areas.
基金supported jointly by Key Laboratory of Geo-special Information Technology, Ministry of Land and Resources (Grant No. KLGSIT2013-12)Knowledge Innovation Program (Grant No. KSCX1-YW-09-01) of Chinese Academy of Sciences
文摘Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in mountainous terrain. Mountainous terrain mapping using ALOS image faces numerous challenges. These include spectral confusion with other land cover features, topographic effects on spectral signatures (such as shadow). At first, topographic radiometric correction was carried out to remove the illumination effects of topography. In addition to spectral features, texture features were used to assist classification in this paper. And texture features extracted based on GLCM (Gray Level Co- occurrence Matrix) were not only used for segmentation, but also used for building rules. The performance of the method was evaluated and compared with Maximum Likelihood Classification (MLC). Results showed that the object-oriented method integrating spectral and texture features has achieved overall accuracy of 85.73% with a kappa coefficient of 0.824, which is 13.48% and o.145 respectively higher than that got by MLC method. It indicated that texture features can significantly improve overall accuracy, kappa coefficient, and the classification precision of existing spectrum confusion features. Object-oriented method Integrating spectral and texture features is suitable for land use extraction of ALOS image in mountainous terrain.
基金supported by the National Natural Science Foundation of China(Nos.U2001202,62072480,U1736118)the National Key R&D Program of China(Nos.2019QY2202,2019QY(Y)0207)+1 种基金the Key Areas R&D Program of Guangdong(No.2019B010136002)the Key Scientific Research Program of Guangzhou(No.201804020068).
文摘In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes.The spread of face manipulation videos is very easy to bring fake information.Therefore,it is important to develop effective detection methods to verify the authenticity of the videos.Due to that it is still challenging for current forgery technologies to generate all facial details and the blending operations are used in the forgery process,the texture details of the fake face are insufficient.Therefore,in this paper,a new method is proposed to detect DeepFake videos.Firstly,the texture features are constructed,which are based on the gradient domain,standard deviation,gray level co-occurrence matrix and wavelet transform of the face region.Then,the features are processed by the feature selection method to form a discriminant feature vector,which is finally employed to SVM for classification at the frame level.The experimental results on the mainstream DeepFake datasets demonstrate that the proposed method can achieve ideal performance,proving the effectiveness of the proposed method for DeepFake videos detection.
基金Supported by the University Doctorate Special Research Fund(No.20030614001)
文摘This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, which can not only detect the edge and lines but also avoid stretching edge and suppressing lines of the former algorithm. Experimental results with both simulated and real SAR images verify the advantage and practicability of the improved method.