Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod...Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.展开更多
The advancement of technology and the digitization of organizational functions and services have propelled the world into a new era of computing capability and sophistication. The proliferation and usability of such c...The advancement of technology and the digitization of organizational functions and services have propelled the world into a new era of computing capability and sophistication. The proliferation and usability of such complex technological services raise several security concerns. One of the most critical concerns is cross-site scripting (XSS) attacks. This paper has concentrated on revealing and comprehensively analyzing XSS injection attacks, detection, and prevention concisely and accurately. I have done a thorough study and reviewed several research papers and publications with a specific focus on the researchers’ defensive techniques for preventing XSS attacks and subdivided them into five categories: machine learning techniques, server-side techniques, client-side techniques, proxy-based techniques, and combined approaches. The majority of existing cutting-edge XSS defensive approaches carefully analyzed in this paper offer protection against the traditional XSS attacks, such as stored and reflected XSS. There is currently no reliable solution to provide adequate protection against the newly discovered XSS attack known as DOM-based and mutation-based XSS attacks. After reading all of the proposed models and identifying their drawbacks, I recommend a combination of static, dynamic, and code auditing in conjunction with secure coding and continuous user awareness campaigns about XSS emerging attacks.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)No.2015R1A3A2031159,2016R1A5A1008055.
文摘Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.
文摘The advancement of technology and the digitization of organizational functions and services have propelled the world into a new era of computing capability and sophistication. The proliferation and usability of such complex technological services raise several security concerns. One of the most critical concerns is cross-site scripting (XSS) attacks. This paper has concentrated on revealing and comprehensively analyzing XSS injection attacks, detection, and prevention concisely and accurately. I have done a thorough study and reviewed several research papers and publications with a specific focus on the researchers’ defensive techniques for preventing XSS attacks and subdivided them into five categories: machine learning techniques, server-side techniques, client-side techniques, proxy-based techniques, and combined approaches. The majority of existing cutting-edge XSS defensive approaches carefully analyzed in this paper offer protection against the traditional XSS attacks, such as stored and reflected XSS. There is currently no reliable solution to provide adequate protection against the newly discovered XSS attack known as DOM-based and mutation-based XSS attacks. After reading all of the proposed models and identifying their drawbacks, I recommend a combination of static, dynamic, and code auditing in conjunction with secure coding and continuous user awareness campaigns about XSS emerging attacks.