One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no ...One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no study has been done on Beninese Xoo strains. We do not know whether the pathogen has already passed into the rice varieties grown, or if they are exposed to other bacteria. Whereas the use of resistant varieties, carrying resistance genes, is the only highly effective and environmentally friendly way to control this disease, no information is available on these Xoo resistance genes in rice varieties grown in Benin apart from the one we recently. This study aims to identify Beninese Xoo strains, causing BLB and screen rice varieties grown in Benin for the main resistance genes. Diseased rice leaves showing typical symptoms of fire blight collected from different rice fields in the three phytogeographic areas of Benin were analyzed by PCR for Xoo-specific sequence identification. Furthermore, seventy-five collected rice accessions were screened to identify xa5, Xa7, xa13, and Xa21 resistance genes to Xoo. The results reveal that Xanthomonas oryzae was identified in two fields in Banikouara and one in Malanville. On the other hand, Sphingomonas sp. has been identified in several other rice fields in Benin. Forty-seven of seventy-five rice accessions examined (62.66%) carried Xoo resistance genes with 3 (4%) and 40 (53.33%) of xa5 and Xa21 respectively. None of the accessions had either Xa7 or xa13 resistance genes. Three accessions possess both xa5 and Xa21 genes. Isogenic lines IRBB60 and IRBB21, supposed to be a positive control, presented a Xoo sensitivity allele. These results indicate that Xoo has moved from the wild rice variety to the cultivated variety in northern Benin and varietal improvement programs must be implemented with varieties having several resistance genes for the efficient response against a possible BLB pandemic in Benin.展开更多
Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene a...Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene and 2-4 genes: IRBB1 (Xa1), IRBB2 (Xa2), IRBB3 (Xa3), IRBB4 (Xa4), IRBB5 (xa5), IRBB7 (Xa7), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13), IRBB14 (Xa14), IRBB21 (Xa21), IR24 (Xa18), IRBB50 (Xa4 + xa5), IRBB51 (Xa4 + xa13), IRBB52 (Xa4 + Xa21), IRBB53 (xa5 + xa13), IRBB54 (xa5 + Xa21), IRBB55 (xa13 + Xa21), IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), IRBB59 (xa5 + xa13 + Xa21) and IRBB60 (Xa4 + xa5 + xa13 + Xa21). The results showed that most isolates were less virulent on lines with more than one genes pyramided than those with single resistance gene. The isolates tested were more virulent on IR24 and IRBB10, less virulent on IRBB5, IRBB7 and IRBB21. Based on interactions between isolates and rice near-isogenic lines, 7 cultivars with single gene (IRBB5, IRBB4, IRBB3, IRBB14, IRBB2, IRBB1 and IR24) were chosen as the differentials, and the tested isolates were classified into 7 virulence groups. The reaction patterns of the 7 groups in order were: RRRRRRR, RRRRRRS, RRRRRSS, RR/SRRSSS, RRRSSSS, RRSSSSS, RSSSSSS. The virulence frequencies were 7.69, 6.59, 14.29, 12.09, 14.29, 28.57 and 16.48% respectively. The elementary system for races identification has been established in China based on the results. It will be possible to compare with races in other countries, and the results will facilitate the development of rice resistance breeding to bacterial blight in China.展开更多
Saikuzuo (N, N’-methylene-di (2-amino-5-sulfurhydrogen-1, 3, 4-thiodiazole)) a good bactericideagainst rice bacterial blight disease, has been usedin China for more than 20 years. In this study,the sensitivity of X. ...Saikuzuo (N, N’-methylene-di (2-amino-5-sulfurhydrogen-1, 3, 4-thiodiazole)) a good bactericideagainst rice bacterial blight disease, has been usedin China for more than 20 years. In this study,the sensitivity of X. oryzae pv. oryzae (Xoo) tosaikuzuo was tested in vitro and in vivo. Seventy-seven and 11 isolates were collected from Hexian,Anhui Province, and Liuhe, Jiangsu Province, re-展开更多
The pathogenicity of 36 isolates of Xanthomonas oryzae pv. oryzae (Xoo), which were collected from japonica rice varieties in the Yunnan Plateau, China, was evaluated. It was evaluated on 29 rice varieties including...The pathogenicity of 36 isolates of Xanthomonas oryzae pv. oryzae (Xoo), which were collected from japonica rice varieties in the Yunnan Plateau, China, was evaluated. It was evaluated on 29 rice varieties including a set of seven varieties to identify pathogenicity, i.e., Haonuoyang, TN1, Kogyoku, Zhenzhu'ai, IR26, Nanjing 33, and Kinmaze, which may be considered as a set of differential varieties for Xoo races from Yunnan japonica rice. The efficiency of the seven varieties was further confirmed. The results showed reversible and specific interactions between isolates and varieties. The isolates were classified into nine pathotypes from pathotyp Ⅰ to Ⅸ according to their pathogenic reactions on the seven rice varieties. The pathotype V was the epidemic, whereas pathogen Ⅶ was the most pathogenic. Most japonica varieties grown in the Yunnan Plateau were susceptible to Xoo. The rice lines IRBB21 (Xa-21), Zhachanglong (Xa-22,, Xa- 24,), and IR1545-339 (xa-5), which were resistant to all the isolates tested, can be used as donors of resistant genes for bacterial blight in japonica rice breeding in the Yunnan Plateau.展开更多
Plants have developed various mechanisms for avoiding pathogen invasion,including resistance(R)genes.Most R genes encode nucleotide-binding domain and leucine-rich repeat containing proteins(NLRs).Here,we report the i...Plants have developed various mechanisms for avoiding pathogen invasion,including resistance(R)genes.Most R genes encode nucleotide-binding domain and leucine-rich repeat containing proteins(NLRs).Here,we report the isolation of three new bacterial blight R genes in rice,Xa1-2,Xa14,and Xa31(t),which were allelic to Xa1 and encoded atypical NLRs with unique central tandem repeats(CTRs).We also found that Xa31(t)was the same gene as Xa1-2.Although Xa1-2 and Xa14 conferred different resistance spectra,their performance could be attenuated by iTALEs,as has previously been reported for Xa1.XA1,XA1-2,XA14,and non-resistant RGAF differed mainly in the substructure of the leucine-rich repeat domain.They all contained unique CTRs and belonged to the CTR-NLRs,which existed only in Gramineae.We also found that interactions among these genes led to differing resistance performance.In conclusion,our results uncover a unique locus in rice consisting of at least three multiple alleles(Xa1,Xa1-2,and Xa14)that encode CTRNLRs and confer resistance to Xanthomonas oryzae pv.oryzae(Xoo).展开更多
Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' fo...Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia.展开更多
Xanthomonas oryzae pv.oryzae,the causal agent of bacterial blight in rice,interacts with rice plants in a gene-for-gene manner.The specificity of the interaction is dictated by avirulence(avr) genes in the pathogen an...Xanthomonas oryzae pv.oryzae,the causal agent of bacterial blight in rice,interacts with rice plants in a gene-for-gene manner.The specificity of the interaction is dictated by avirulence(avr) genes in the pathogen and resistance(R) genes in the host.To date,no avr genes that correspond to recessive R genes have been isolated.We isolated an avrBs3/pthA family gene,avrxa5,from our previously isolated clone p58,which was originally from strain JXOIII.The avrxa5 gene converted the PXO99A strain from compatible to incompatible in rice cultivars containing the recessive xa5 gene,but not in those containing the dominant Xa5 gene.Sequencing indicated that avrxa5,which is highly similar to members of the avrBs3/pthA family,encodes a protein of 1238 amino acid residues with a conserved carboxy-terminal region containing three nuclear localization signals and a transcription activation domain.It has 19.5 34-amino-acid direct repeats,but the 13th amino acid is missing in the fifth and ninth repetitive units.Domain swapping of the repetitive regions between avrxa5 and avrXa7 changed the avirulence specificity of the genes in xa5 and Xa7 rice lines,respectively.This indicates that avrxa5 is distinct from previously characterized avrBs3/pthA members.The specificity of avrxa5 toward recessive xa5 in rice could help us better understand the molecular mechanisms of plant-pathogen specific interactions.展开更多
文摘One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no study has been done on Beninese Xoo strains. We do not know whether the pathogen has already passed into the rice varieties grown, or if they are exposed to other bacteria. Whereas the use of resistant varieties, carrying resistance genes, is the only highly effective and environmentally friendly way to control this disease, no information is available on these Xoo resistance genes in rice varieties grown in Benin apart from the one we recently. This study aims to identify Beninese Xoo strains, causing BLB and screen rice varieties grown in Benin for the main resistance genes. Diseased rice leaves showing typical symptoms of fire blight collected from different rice fields in the three phytogeographic areas of Benin were analyzed by PCR for Xoo-specific sequence identification. Furthermore, seventy-five collected rice accessions were screened to identify xa5, Xa7, xa13, and Xa21 resistance genes to Xoo. The results reveal that Xanthomonas oryzae was identified in two fields in Banikouara and one in Malanville. On the other hand, Sphingomonas sp. has been identified in several other rice fields in Benin. Forty-seven of seventy-five rice accessions examined (62.66%) carried Xoo resistance genes with 3 (4%) and 40 (53.33%) of xa5 and Xa21 respectively. None of the accessions had either Xa7 or xa13 resistance genes. Three accessions possess both xa5 and Xa21 genes. Isogenic lines IRBB60 and IRBB21, supposed to be a positive control, presented a Xoo sensitivity allele. These results indicate that Xoo has moved from the wild rice variety to the cultivated variety in northern Benin and varietal improvement programs must be implemented with varieties having several resistance genes for the efficient response against a possible BLB pandemic in Benin.
基金This study was supported by the National Natural Science Foundation of China(30070497)National 863 Program of China(2002AA245041).
文摘Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene and 2-4 genes: IRBB1 (Xa1), IRBB2 (Xa2), IRBB3 (Xa3), IRBB4 (Xa4), IRBB5 (xa5), IRBB7 (Xa7), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13), IRBB14 (Xa14), IRBB21 (Xa21), IR24 (Xa18), IRBB50 (Xa4 + xa5), IRBB51 (Xa4 + xa13), IRBB52 (Xa4 + Xa21), IRBB53 (xa5 + xa13), IRBB54 (xa5 + Xa21), IRBB55 (xa13 + Xa21), IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), IRBB59 (xa5 + xa13 + Xa21) and IRBB60 (Xa4 + xa5 + xa13 + Xa21). The results showed that most isolates were less virulent on lines with more than one genes pyramided than those with single resistance gene. The isolates tested were more virulent on IR24 and IRBB10, less virulent on IRBB5, IRBB7 and IRBB21. Based on interactions between isolates and rice near-isogenic lines, 7 cultivars with single gene (IRBB5, IRBB4, IRBB3, IRBB14, IRBB2, IRBB1 and IR24) were chosen as the differentials, and the tested isolates were classified into 7 virulence groups. The reaction patterns of the 7 groups in order were: RRRRRRR, RRRRRRS, RRRRRSS, RR/SRRSSS, RRRSSSS, RRSSSSS, RSSSSSS. The virulence frequencies were 7.69, 6.59, 14.29, 12.09, 14.29, 28.57 and 16.48% respectively. The elementary system for races identification has been established in China based on the results. It will be possible to compare with races in other countries, and the results will facilitate the development of rice resistance breeding to bacterial blight in China.
文摘Saikuzuo (N, N’-methylene-di (2-amino-5-sulfurhydrogen-1, 3, 4-thiodiazole)) a good bactericideagainst rice bacterial blight disease, has been usedin China for more than 20 years. In this study,the sensitivity of X. oryzae pv. oryzae (Xoo) tosaikuzuo was tested in vitro and in vivo. Seventy-seven and 11 isolates were collected from Hexian,Anhui Province, and Liuhe, Jiangsu Province, re-
文摘The pathogenicity of 36 isolates of Xanthomonas oryzae pv. oryzae (Xoo), which were collected from japonica rice varieties in the Yunnan Plateau, China, was evaluated. It was evaluated on 29 rice varieties including a set of seven varieties to identify pathogenicity, i.e., Haonuoyang, TN1, Kogyoku, Zhenzhu'ai, IR26, Nanjing 33, and Kinmaze, which may be considered as a set of differential varieties for Xoo races from Yunnan japonica rice. The efficiency of the seven varieties was further confirmed. The results showed reversible and specific interactions between isolates and varieties. The isolates were classified into nine pathotypes from pathotyp Ⅰ to Ⅸ according to their pathogenic reactions on the seven rice varieties. The pathotype V was the epidemic, whereas pathogen Ⅶ was the most pathogenic. Most japonica varieties grown in the Yunnan Plateau were susceptible to Xoo. The rice lines IRBB21 (Xa-21), Zhachanglong (Xa-22,, Xa- 24,), and IR1545-339 (xa-5), which were resistant to all the isolates tested, can be used as donors of resistant genes for bacterial blight in japonica rice breeding in the Yunnan Plateau.
基金supported by grants from the National Natural Science Foundation of China(grant nos.31821005,31772145,and 31200912)the China Scholarship Council(file no.201908420054).
文摘Plants have developed various mechanisms for avoiding pathogen invasion,including resistance(R)genes.Most R genes encode nucleotide-binding domain and leucine-rich repeat containing proteins(NLRs).Here,we report the isolation of three new bacterial blight R genes in rice,Xa1-2,Xa14,and Xa31(t),which were allelic to Xa1 and encoded atypical NLRs with unique central tandem repeats(CTRs).We also found that Xa31(t)was the same gene as Xa1-2.Although Xa1-2 and Xa14 conferred different resistance spectra,their performance could be attenuated by iTALEs,as has previously been reported for Xa1.XA1,XA1-2,XA14,and non-resistant RGAF differed mainly in the substructure of the leucine-rich repeat domain.They all contained unique CTRs and belonged to the CTR-NLRs,which existed only in Gramineae.We also found that interactions among these genes led to differing resistance performance.In conclusion,our results uncover a unique locus in rice consisting of at least three multiple alleles(Xa1,Xa1-2,and Xa14)that encode CTRNLRs and confer resistance to Xanthomonas oryzae pv.oryzae(Xoo).
文摘Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia.
基金supported by the State Key Basic Research and Development Project of China (Grant No. 2006CB101902)the National Natural Science Foundation of China (Grant Nos. 30710103902 and 30671354)the Ministry of Agriculture of China (Grant No. NYHYZX07-056)
文摘Xanthomonas oryzae pv.oryzae,the causal agent of bacterial blight in rice,interacts with rice plants in a gene-for-gene manner.The specificity of the interaction is dictated by avirulence(avr) genes in the pathogen and resistance(R) genes in the host.To date,no avr genes that correspond to recessive R genes have been isolated.We isolated an avrBs3/pthA family gene,avrxa5,from our previously isolated clone p58,which was originally from strain JXOIII.The avrxa5 gene converted the PXO99A strain from compatible to incompatible in rice cultivars containing the recessive xa5 gene,but not in those containing the dominant Xa5 gene.Sequencing indicated that avrxa5,which is highly similar to members of the avrBs3/pthA family,encodes a protein of 1238 amino acid residues with a conserved carboxy-terminal region containing three nuclear localization signals and a transcription activation domain.It has 19.5 34-amino-acid direct repeats,but the 13th amino acid is missing in the fifth and ninth repetitive units.Domain swapping of the repetitive regions between avrxa5 and avrXa7 changed the avirulence specificity of the genes in xa5 and Xa7 rice lines,respectively.This indicates that avrxa5 is distinct from previously characterized avrBs3/pthA members.The specificity of avrxa5 toward recessive xa5 in rice could help us better understand the molecular mechanisms of plant-pathogen specific interactions.