This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The secur...This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these ...Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.展开更多
基金Supported by the National Natural Science Foundation of China (90104005, 60373087, 60473023) and Network and Information Security Key Laboratory Program of Ministry of Education of China
文摘This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金funded by Researchers Supporting Project Number(RSPD2025R 947),King Saud University,Riyadh,Saudi Arabia.
文摘Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.