期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents 被引量:2
1
作者 Ya-YenChen Chiao-MingChen +2 位作者 Pi-YuChao Tsan-JuChang Jen-FangLiu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第3期389-392,共4页
AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague... AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin 0-deethylase (EROD), pentoxyresorufin 0-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system. 展开更多
关键词 Frying oil Houttuynia cordata thunb Xenobiotic metabolizing enzyme system
下载PDF
Phenotype prediction of nonsynonymous single nucleotide polymorphisms in human phase II drug/xenobiotic metabolizing enzymes: perspectives on molecular evolution 被引量:6
2
作者 HAO DaCheng XIAO PeiGen CHEN ShiLin 《Science China(Life Sciences)》 SCIE CAS 2010年第10期1252-1262,共11页
Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions can lead to amino acid changes that might alter the protein’s function and account for susceptibility to disease and altered drug/xenobiotic re... Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions can lead to amino acid changes that might alter the protein’s function and account for susceptibility to disease and altered drug/xenobiotic response. Many nsSNPs have been found in genes encoding human phase II metabolizing enzymes; however, there is little known about the relationship between the genotype and phenotype of nsSNPs in these enzymes. We have identified 923 validated nsSNPs in 104 human phase II enzyme genes from the Ensembl genome database and the NCBI SNP database. Using PolyPhen, Panther, and SNAP algorithms, 44%?59% of nsSNPs in phase II enzyme genes were predicted to have functional impacts on protein function. Predictions largely agree with the available experimental annotations. 68% of deleterious nsSNPs were correctly predicted as damaging. This study also identified many amino acids that are likely to be functionally critical, but have not yet been studied experimentally. There was significant concordance between the predicted results of Panther and PolyPhen, and between SNAP non-neutral predictions and PolyPhen scores. Evolutionarily non-neutral (destabilizing) amino acid substitutions are thought to be the pathogenetic basis for the alteration of phase II enzyme activity and to be associated with disease susceptibility and drug/xenobiotic toxicity. Furthermore, the molecular evolutionary patterns of phase II enzymes were characterized with regards to the predicted deleterious nsSNPs. 展开更多
关键词 PHENOTYPE PolyPhen PANTHER SNAP SNP phase II drug/xenobiotic metabolizing enzyme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部