To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the developm...The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the development of underground space has led to various problems in the process of underground space development and operation.This paper took the key development zone of the Xiong’an New Area as the study area,and used the Groundwater modeling system software(GMS)to analyse the influence on the groundwater flow field under the point,line,and surface development modes.The main results showed that the underground space development would lead to the expansion and deepening of the cone of depression in the aquifer.The groundwater level on the upstream face of the underground structure would rise,while the water level on the downstream face would drop.The“line”concurrent development has the least impact on the groundwater flow field,and the maximum rise of water level on the upstream side of the underground structure is expected to be approximately 3.05 m.The“surface”development has the greatest impact on the groundwater flow field,and the maximum rise of water level is expected to be 7.17 m.展开更多
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ...Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.展开更多
Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat...Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L...The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.展开更多
This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their cap...Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.展开更多
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large...Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.展开更多
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
The utilization and development of urban underground space play a crucial role in optimizing the layout of civic architecture and enhancing the urban ecological environment,which contributes toward increasing the over...The utilization and development of urban underground space play a crucial role in optimizing the layout of civic architecture and enhancing the urban ecological environment,which contributes toward increasing the overall carrying capacity and promoting sustainable development in megacities.To delve into the research progress of urban underground space,knowledge maps were created using the information visualization software VOSviewer.The literature was systematically extracted from three prominent databases,namely,Web of Science,Scopus,and China National Knowledge Infrastructure.According to the bibliometric analysis of the co-citation and core words co-occurrence,the trends and challenges of research on urban underground space were identified.As highlighted by the results obtained,it still remains highly challenging to achieve interdisciplinary collaboration in urban underground space research;the research trends of urban underground space consist of collaborative planning and whole life cycle sustainable development,multisource geological data informatization and resource evaluation,infrastructure design optimization,and intelligent construction.The knowledge map,drawn using bibliometric methods,offers a quantitative analysis of literature retrieval across various levels.It is recognized as an essential tool for exploring and identifying challenges and trends in urban underground space.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect...Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.展开更多
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po...The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
基金the Evaluation of soil and water quality and engineering geological survey in Xiong’an New Area Program of China(Grant No.DD20189122)National Natural Science Foundation of China(Grant No.42102294).
文摘The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the development of underground space has led to various problems in the process of underground space development and operation.This paper took the key development zone of the Xiong’an New Area as the study area,and used the Groundwater modeling system software(GMS)to analyse the influence on the groundwater flow field under the point,line,and surface development modes.The main results showed that the underground space development would lead to the expansion and deepening of the cone of depression in the aquifer.The groundwater level on the upstream face of the underground structure would rise,while the water level on the downstream face would drop.The“line”concurrent development has the least impact on the groundwater flow field,and the maximum rise of water level on the upstream side of the underground structure is expected to be approximately 3.05 m.The“surface”development has the greatest impact on the groundwater flow field,and the maximum rise of water level is expected to be 7.17 m.
基金This research was financially supported by the Science and Technology Department of Sichuan Province Project,China(Grant Nos.2022YFSY0007,2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.
文摘Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
基金supported by the National Natural Science Foundation of China(Nos.52125402 and 52174084)the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0005).
文摘The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.
文摘This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
文摘Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.
基金supporting this work and funding research through the project Enabling Large-Scale Hydrogen Underground Storage in Porous Media(21.RP2.0091)。
文摘Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
基金Industry-University-Research Innovation Foundation of Chinese Universities,Grant/Award Number:2020ITA03010National Natural Science Foundation of China,Grant/Award Numbers:41920104007,42227805。
文摘The utilization and development of urban underground space play a crucial role in optimizing the layout of civic architecture and enhancing the urban ecological environment,which contributes toward increasing the overall carrying capacity and promoting sustainable development in megacities.To delve into the research progress of urban underground space,knowledge maps were created using the information visualization software VOSviewer.The literature was systematically extracted from three prominent databases,namely,Web of Science,Scopus,and China National Knowledge Infrastructure.According to the bibliometric analysis of the co-citation and core words co-occurrence,the trends and challenges of research on urban underground space were identified.As highlighted by the results obtained,it still remains highly challenging to achieve interdisciplinary collaboration in urban underground space research;the research trends of urban underground space consist of collaborative planning and whole life cycle sustainable development,multisource geological data informatization and resource evaluation,infrastructure design optimization,and intelligent construction.The knowledge map,drawn using bibliometric methods,offers a quantitative analysis of literature retrieval across various levels.It is recognized as an essential tool for exploring and identifying challenges and trends in urban underground space.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金supported by the National Natural Science Foundation of China under Grant No.61976226the Research and Academic Team of South-CentralMinzu University under Grant No.KTZ20050.
文摘Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.
文摘The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system.