REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and...REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ∑REE, ∑LREE/∑HREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skamization or alteration magmatic rocks, skam type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material.展开更多
To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the ...To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.展开更多
Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Rese...Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.展开更多
1 Geologic background THE volcanic U-deposits are generally associated with felsic to intermediate volcanic rock and their sedimentary derivatives. However, uranium mineralization has been found to be spatially associ...1 Geologic background THE volcanic U-deposits are generally associated with felsic to intermediate volcanic rock and their sedimentary derivatives. However, uranium mineralization has been found to be spatially associated with thebasalt of bimodal volcanic associations in Baimianshi uranium ore field. Baimianshi uranium ore-field islocated in Baimianshi volcanic-sedimentary basin of south Jiangxi Province. The cover rocks of the basinconsist of a suite of bimodal volcanic-sedimentary sequences. Its basement rocks are two-mica granites ofBaimianshi rock body. The basalt of cover rocks is interbedded with arkoses in lower sequence, and rhyolite or rhyolitic tuff in upper sequence. Uranium minerals mainly occur as disseminations in the展开更多
基金Project supported bythe National Natural Science Foundation of China (40472052)
文摘REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ∑REE, ∑LREE/∑HREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skamization or alteration magmatic rocks, skam type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material.
基金Projects(41202051,41672076)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.
文摘Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.
文摘1 Geologic background THE volcanic U-deposits are generally associated with felsic to intermediate volcanic rock and their sedimentary derivatives. However, uranium mineralization has been found to be spatially associated with thebasalt of bimodal volcanic associations in Baimianshi uranium ore field. Baimianshi uranium ore-field islocated in Baimianshi volcanic-sedimentary basin of south Jiangxi Province. The cover rocks of the basinconsist of a suite of bimodal volcanic-sedimentary sequences. Its basement rocks are two-mica granites ofBaimianshi rock body. The basalt of cover rocks is interbedded with arkoses in lower sequence, and rhyolite or rhyolitic tuff in upper sequence. Uranium minerals mainly occur as disseminations in the