期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Sinistral Strike-slip Movement Along Western Terminal Segment of the Active Daqingshan Piedmont Fault, Inner Mongolia, China
1
作者 Jiang Wali, Xiao Zhenmin and Wang HuanzhenInstitute of Crustal Dynamics, CSB, Beijing 100085, China 《Earthquake Research in China》 2001年第1期15-24,共10页
There are 18 gullies displaying sinistral contortions to different degrees along the western terminal segment about 10 km long of the active Daqingshan piedmont fault near the Donghe District, Baotou City. The contort... There are 18 gullies displaying sinistral contortions to different degrees along the western terminal segment about 10 km long of the active Daqingshan piedmont fault near the Donghe District, Baotou City. The contortion amount of gullies ranges from 20 m to 300 m. The contortion and length of the gullies are in direct proportion. The relation between piedmont terraces and gullies indicates that the gullies with upper reaches of about 1 ~ 5 km long and those smaller than one kilometer were formed at the end of Late Pleistocene and Holocene.Meanwhile, sandy gravel layer of alluvial-proluvial sediment on the upthrown wall is directly in contact with yellow clayey sand of the downthrown wall. During the Holocene, the sinistral strike-slip rate along the western terminal segment of the active Daqingshan piedmont fault reached 5 mm/a from age data of dislocated sediments. The evolutional mechanism of the active Daqingshan piedmont fault is also discussed in the paper. 展开更多
关键词 sinistral strike-slip HOLOCENE Daqingshan active PIEDMONT fault
下载PDF
Uniform Strike-Slip Rate along the Xianshuihe-Xiaojiang Fault System and Its Implications for Active Tectonics in Southeastern Tibet 被引量:18
2
作者 HE Honglin RAN Hongliu Yasutaka IKEDA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期376-386,共11页
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately un... Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma. 展开更多
关键词 xianshuihe-xiaojiang fault system southeastern Tibet strike-slip rate active tectonics
下载PDF
The Altun Fault: Its Geometry, Nature and Mode of Growth 被引量:5
3
作者 崔军文 李莉 +4 位作者 杨经绥 岳永军 李朋武 张建新 陈文 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期133-143,共11页
The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours incl... The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours including thrusting, sinistral strike slip and normal slip. The strike slip and normal slip mainly occurred in the Cretaceous—Cenozoic and Plio-Quaternary respectively, whereas the thrusting was a deformation event that has played a dominant role since the late Palaeozoic (for a duration of about 305 Ma). The formation of the Altun fault was related to strong inhomogeneous deformation of the massifs on its two sides (in the hinterland of the Altun Mountains contractional deformation predominated and in the Qilian massif thrust propagation was dominant). The fault experienced a dynamic process of successive break-up and connection of its segments and gradual propagation, which was synchronous with the development of an overstep thrust sequence in the Qilian massif and the uplift of the Qinghai-Tibet plateau. With southward propagation of the thrust sequence and continued uplift of the plateau, the NE tip of the Altun fault moved in a NE direction, while the SW tip grew in a SW direction. 展开更多
关键词 Altun (Altyn Tagh) fault thrust sequence propagation sinistral strike-slip mode of growth
下载PDF
Deformation at the Easternmost Altyn Tagh Fault: Constraints on the Growth of the Northern Qinghai–Tibetan Plateau 被引量:4
4
作者 ZHANG Jin YUN Long +5 位作者 ZHANG Beihang QU Junfeng ZHAO Heng HUI Jie WANG Yannan ZHANG Yiping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期988-1006,共19页
How the Altyn Tagh fault(ATF) extends eastwards is one of the key questions in the study of the growth of the Qinghai–Tibetan Plateau. Detailed fieldwork at the easternmost part of the ATF shows that the ATF extends ... How the Altyn Tagh fault(ATF) extends eastwards is one of the key questions in the study of the growth of the Qinghai–Tibetan Plateau. Detailed fieldwork at the easternmost part of the ATF shows that the ATF extends eastward and bypasses the Kuantan Mountain;it does not stop at the Kuantan Mountain, but connects with the northern Heishan fault in the east. The ATF does not enter the Alxa Block but extends eastward along the southern Alxa Block to the Jintanan Mountain. The Heishan fault is not a thrust fault but a sinistral strike-slip fault with a component of thrusting and is a part of the ATF. Further to the east, the Heishan fault may connect with the Jintananshan fault. A typical strike-slip duplex develops in the easternmost part of the ATF. The cut and deformed Quaternary sediments and displaced present gullies along the easternmost ATF indicate that it is an active fault. The local highest Mountain(i.e., the Kuantan Mountain) in the region forms in a restraining bend of the ATF due to the thrusting and uplifting. The northward growth of the Qinghai–Tibetan Plateau and the active deformation in South Mongolia are realized by sinistral strike-slipping on a series of NE–SW-trending faults and thrusting in restraining bends along the strike-slip faults with the northeastward motion of blocks between these faults. 展开更多
关键词 sinistral strike-slip fault Altyn Tagh fault Alxa Block Late Cenozoic Qinghai–Tibetan Plateau
下载PDF
Tancheng-Lujiang Fault System: Its Characters and Control on Oil-Gas Distribution in Eastern China 被引量:1
5
作者 Chen Quanmao Liang Xiaodong +2 位作者 Zhang Guangya Chen Jinghua(Department of Petroleum Geology, China University of Geosciences, Wuhan 430074)Wu Zejian Liao Xingmin(Liaohe Bureau of Petroleum Exploration, Panjin 124010) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期197-203,共7页
Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng... Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures. 展开更多
关键词 strike-slip fault sinistral translation dextrose strike-slip fault depression subsiding quantity trap structure
下载PDF
Morphodynamic development of the Terkhiin Tsagaan Lake Depression,Central Mongolia:Implications for the relationships of Faulting,Volcanic Activity,and Lake Depression Formation
6
作者 Altanbold ENKHBOLD Ulambadrakh KHUKHUUDEI +4 位作者 Timothy KUSKY CHUN Xi Gansukh YADAMSUREN Byambabayar GANBOLD Tuvshin GERELMAA 《Journal of Mountain Science》 SCIE CSCD 2022年第9期2451-2468,共18页
Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of exist... Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of existing reconstructions of lake depression development and changes in the hydrology system during the Khorgo volcanic activation and the Holocene environmental change.A depression of the Terkhiin Tsagaan Lake is formed by a lava flow barrier from the Khorgo volcano.However,the Khorgo volcanic eruption and the lake depression that could shape a large lake have arisen instead from a fault.The morphometric analysis and field measurements indicate that the derivation of the Terkhiin Tsagaan Lake depression and Khorgo volcano may have evolved from movement on a sinistral strike-slip fault,which is about 70 km long.The southern mountains and rivers were displaced from northwest to southeast along the Terkh Fault.The offset along Terkh Fault is 4.02-5.28 km in the depression of the Terkhiin Tsagaan Lake.After movement,a wide valley of the Terkh River developed in the present landscape.The active Khorgo Volcano formed along the Khorgo Fault.The Terkhiin Tsagaan Lake is formed by blocked water from the PaleoTerkh River after lava damming from the Khorgo Volcano.The initial paleo-lake area was about 195.7km^(2),which was three times larger than the modern lake.The current water volume of the Terkhiin Tsagaan Lake is 0.351 km^(3) while the volume of the paleo-lake was 2.248 km^(3).Based on this volume indicator the paleo-lake was 6.4 times larger than the current lake.Overflowing water from the lake depression formed the Suman River by a drying canyon through the lava plateau,but the canyon is along the Terkh Fault.Changes in the water volume of Terkhiin Tsagaan Lake and erosion of Suman River canyon are inversely related to each other.We present the morphometric relationships between the lava plateau of Khorgo Volcano and development of Terkhiin Tsagaan Lake depression. 展开更多
关键词 Khangay Mountain Khorgo Volcano Lava plateau sinistral strike-slip fault Terkhiin Tsagaan Lake Morphometric analysis
下载PDF
Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model 被引量:32
7
作者 P. Tapponnier J. Van Der Woerd +1 位作者 F. J. Ryerson A.S. Meriaux 《Science China Earth Sciences》 SCIE EI CAS 2005年第3期384-397,共14页
Based on technical processing of high-resolution SPOT images and aerophotos, detailed mapping of offset landforms in combination with field examination and displacement measurement, and dating of offset geomorphic sur... Based on technical processing of high-resolution SPOT images and aerophotos, detailed mapping of offset landforms in combination with field examination and displacement measurement, and dating of offset geomorphic surfaces by using carbon fourteen (14C), cos- mogenic nuclides (10Be+26Al) and thermoluminescence (TL) methods, the Holocene sinistral slip rates on different segments of the Altyn Tagh Fault (ATF) are obtained. The slip rates reach 17.5 ±2 mm/a on the central and western segments west of Aksay Town, 11±3.5 mm/a on the Subei-Shibaocheng segment, 4.8±1.0 mm/a on the Sulehe segment and only 2.2±0.2 mm/a on the Kuantanshan segment, an easternmost segment of the ATF. The sudden change points for loss of sinistral slip rates are located at the Subei, Shibaocheng and Shulehe triple junctions where NW-trending active thrust faults splay from the ATF and propagate southeastward. Slip vector analyses indicate that the loss of the sinistral slip rates from west to east across a triple junction has structurally transformed into local crustal shortening perpendicular to the active thrust faults and strong uplifting of the thrust sheets to form the NW-trending Danghe Nanshan, Daxueshan and Qilianshan Ranges. Therefore, the eastward extrusion of the northern Qing- hai-Tibetan Plateau is limited and this is in accord with “the imbricated thrusting transforma- tion-limited extrusion model”. 展开更多
关键词 Altyn Tagh fault sinistral strike-slip rate STRUCTURAL transformation EXTRUSION tectonics.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部